Repository logo
 
Publication

Stream Recommendation with Individual Hyper-parameters

dc.contributor.authorVeloso, Bruno
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorFoss, Jeremy D.
dc.date.accessioned2019-12-20T10:25:40Z
dc.date.available2019-12-20T10:25:40Z
dc.date.issued2019
dc.description.abstractNowadays, with the widely usage of on-line stream video platforms, the number of media resources available and the volume of crowd-sourced feedback volunteered by viewers is increasing exponentially. In this scenario, the adoption of recommendation systems allows platforms to match viewers with resources. However, due to the sheer size of the data and the pace of the arriving data, there is the need to adopt stream mining algorithms to build and maintain models of the viewer preferences as well as to make timely personalised recommendations. In this paper, we propose the adoption of optimal individual hyper-parameters to build more accurate dynamic viewer models. First, we use a grid search algorithm to identify the optimal individual hyper-parameters (IHP) and, then, use these hyper-parameters to update incrementally the user model. This technique is based on an incremental learning algorithm designed for stream data. The results show that our approach outperforms previous approaches, reducing substantially the prediction errors and, thus, increasing the accuracy of the recommendations.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/15171
dc.language.isoengpt_PT
dc.publisherCEUR Workshop Proceedingspt_PT
dc.relation.publisherversionhttp://ceur-ws.org/Vol-2423/pt_PT
dc.subjectStream Content Personalisationpt_PT
dc.subjectCollaborative Filteringpt_PT
dc.subjectHyperParameter Optimisationpt_PT
dc.titleStream Recommendation with Individual Hyper-parameterspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceManchester, UK, June 5, 2019pt_PT
oaire.citation.endPage8pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleProceedings of the 1st International Workshop on Data-Driven Personalisation of Television (DataTV 2019), co-located with the ACM International Conference on Interactive Experiences for Television and Online Video (TVX 2019)pt_PT
oaire.citation.volume2423pt_PT
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.givenNameMARIA
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0001-9083-4292
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication.latestForDiscoverybabd4fda-654a-4b59-952d-6113eebbb308

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_LSA_BMalheiro_DataTV2019.pdf
Size:
1022.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: