Repository logo
 
Publication

MASCEM: electricity markets simulation with strategic agents

dc.contributor.authorVale, Zita
dc.contributor.authorPinto, Tiago
dc.contributor.authorPraça, Isabel
dc.contributor.authorMorais, H.
dc.date.accessioned2013-04-19T09:58:53Z
dc.date.available2013-04-19T09:58:53Z
dc.date.issued2011
dc.date.updated2013-04-12T16:55:06Z
dc.description.abstractElectricity markets are complex environments, involving numerous entities trying to obtain the best advantages and profits while limited by power-network characteristics and constraints.1 The restructuring and consequent deregulation of electricity markets introduced a new economic dimension to the power industry. Some observers have criticized the restructuring process, however, because it has failed to improve market efficiency and has complicated the assurance of reliability and fairness of operations. To study and understand this type of market, we developed the Multiagent Simulator of Competitive Electricity Markets (MASCEM) platform based on multiagent simulation. The MASCEM multiagent model includes players with strategies for bid definition, acting in forward, day-ahead, and balancing markets and considering both simple and complex bids. Our goal with MASCEM was to simulate as many market models and player types as possible. This approach makes MASCEM both a short- and mediumterm simulation as well as a tool to support long-term decisions, such as those taken by regulators. This article proposes a new methodology integrated in MASCEM for bid definition in electricity markets. This methodology uses reinforcement learning algorithms to let players perceive changes in the environment, thus helping them react to the dynamic environment and adapt their bids accordingly.por
dc.identifierDOI 10.1109/MIS.2011.3
dc.identifier.doi10.1109/MIS.2011.3pt_PT
dc.identifier.issn1541-1672
dc.identifier.urihttp://hdl.handle.net/10400.22/1416
dc.language.isoengpor
dc.publisherIEEEpor
dc.relation.ispartofseriesIEEE Intelligent Systems; Vol. 26, Issue 2
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5696716por
dc.subjectMASCEMpor
dc.subjectElectricity marketspor
dc.titleMASCEM: electricity markets simulation with strategic agentspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage17por
oaire.citation.issueIssue 2
oaire.citation.startPage9por
oaire.citation.volumeVol. 26
person.familyNameVale
person.familyNamePinto
person.familyNamePraça
person.givenNameZita
person.givenNameTiago
person.givenNameIsabel
person.identifier632184
person.identifierR-000-T7J
person.identifier299522
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-2519-9859
person.identifier.ridA-5824-2012
person.identifier.ridT-2245-2018
person.identifier.ridK-8430-2014
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id22734900800
rcaap.rightsclosedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublication.latestForDiscovery8d58ddc0-1023-47c0-a005-129d412ce98d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_ZitaVale_2011_GECAD.pdf
Size:
835.91 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: