| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 6.03 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O aumento de variedade e produção de baterias implica o desenvolvimento de dispositivos
capazes de simular as diferentes características de cada tipo de célula, permitindo a
testagem dos componentes constituintes de um pacote de baterias. O teste destes
componentes deve não só compreender as características normais de funcionamento,
assim como características extremas, dificilmente emuladas com o ambiente normal de
funcionamento. É então relevante o desenvolvimento de sistemas capazes de emular estas
condições.
O presente trabalho descreve a conceção e validação de um emulador de baterias, capaz
de reproduzir com elevada fidelidade e precisão o comportamento elétrico de diferentes
tecnologias de armazenamento de energia. A solução proposta baseia-se na
implementação de um sistema parametrizável, capaz de simular as características
dinâmicas e estáticas de uma bateria real, assegurando a replicação do seu perfil de tensão
em função do estado de carga, corrente e condições de operação.
Na sua implementação, foi projetado e desenvolvido um sistema de emulação composto
por hardware de conversão e controlo, aliado a algoritmos otimizados de gestão e
compensação de erro. Para facilitar a aplicação e o controlo deste sistema, foi
implementada uma interface gráfica.
Realiza-se a validação destas capacidades através de diferentes metodologias,
fundamentadas na comparação da amostragem de várias grandezas, realizadas com o
próprio sistema e por um multímetro de alta precisão, Keysight 34461A. A metodologia de
validação também incluiu a caracterização experimental de células reais, cuja informação
foi utilizada para ajustar os parâmetros do modelo e validar a resposta do emulador.
Os resultados obtidos demonstram que o sistema desenvolvido apresenta elevada precisão
na reprodução dos comportamentos de diferentes tipologias de baterias, quando na
ausência de carga. Com a sua resposta dinâmica, garante erros satisfatórios na medição de
corrente, que contrastam com o erro elevado na definição de tensão causado pela ausência
de um estágio de filtragem e uma compensação da tensão aos terminais da carga. Assim, o emulador proposto revela-se uma ferramenta com potencial para testes laboratoriais de
sistemas de conversão, gestão e integração de baterias, reduzindo custos e riscos
associados à utilização de células reais.
The increased variety and production of batteries requires the development of devices capable of simulating the different characteristics of each cell type, allowing the testing of the components within a battery pack. Assessing these components must encompass not only normal operating characteristics, but also extreme characteristics that are difficult to emulate in a normal operating environment. Therefore, the development of systems capable of emulating these conditions is crucial. This work describes the design and validation of a battery emulator capable of reproducing the electrical behavior of different energy storage technologies with high fidelity and accuracy. The proposed solution is based on the implementation of a parameterizable system capable of simulating the dynamic and static characteristics of a real battery, ensuring the replication of its voltage profile depending on the state of charge, current, and operating conditions. For its implementation, an emulation system was designed and developed, consisting of conversion and control hardware, combined with optimized error management and compensation algorithms. To facilitate the application and control of this system, a graphical interface was implemented. These capabilities are validated using different methodologies, based on the comparison of sampling of various quantities, performed with the system itself and a high-precision Keysight 34461A multimeter. The validation methodology also included the experimental characterization of real cells, whose information was used to adjust the model parameters and validate the emulator's response. The results demonstrate that the developed system presents high accuracy in reproducing the behavior of distinct types of batteries when unloaded. With its dynamic response, it ensures satisfactory errors in current measurements, which contrasts with the high error in voltage determination caused by the lack of a filtering stage and voltage compensation at the load terminals. Thus, the proposed emulator proves to be a potential tool for laboratory testing of battery conversion, management, and integration systems, reducing the costs and risks associated with using real cells.
The increased variety and production of batteries requires the development of devices capable of simulating the different characteristics of each cell type, allowing the testing of the components within a battery pack. Assessing these components must encompass not only normal operating characteristics, but also extreme characteristics that are difficult to emulate in a normal operating environment. Therefore, the development of systems capable of emulating these conditions is crucial. This work describes the design and validation of a battery emulator capable of reproducing the electrical behavior of different energy storage technologies with high fidelity and accuracy. The proposed solution is based on the implementation of a parameterizable system capable of simulating the dynamic and static characteristics of a real battery, ensuring the replication of its voltage profile depending on the state of charge, current, and operating conditions. For its implementation, an emulation system was designed and developed, consisting of conversion and control hardware, combined with optimized error management and compensation algorithms. To facilitate the application and control of this system, a graphical interface was implemented. These capabilities are validated using different methodologies, based on the comparison of sampling of various quantities, performed with the system itself and a high-precision Keysight 34461A multimeter. The validation methodology also included the experimental characterization of real cells, whose information was used to adjust the model parameters and validate the emulator's response. The results demonstrate that the developed system presents high accuracy in reproducing the behavior of distinct types of batteries when unloaded. With its dynamic response, it ensures satisfactory errors in current measurements, which contrasts with the high error in voltage determination caused by the lack of a filtering stage and voltage compensation at the load terminals. Thus, the proposed emulator proves to be a potential tool for laboratory testing of battery conversion, management, and integration systems, reducing the costs and risks associated with using real cells.
Description
Keywords
Batteries battery emulator extreme characteristics fidelity precision control algorithms sampling real cell characterization dynamic response filtering stage voltage release Baterias emulador de baterias características extremas fidelidade precisão algoritmos de controlo amostragem caracterização de células reais resposta dinâmica estágio de filtragem compensação da tensão
Pedagogical Context
Citation
Publisher
CC License
Without CC licence
