Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.36 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Despite the steady increase in experimental deployments, most of research work on WSNs has focused only on
communication protocols and algorithms, with a clear lack of effective, feasible and usable system architectures,
integrated in a modular platform able to address both functional and non–functional requirements. In this paper, we
outline EMMON [1], a full WSN-based system architecture for large–scale, dense and real–time embedded monitoring
[3] applications. EMMON provides a hierarchical communication architecture together with integrated middleware and
command and control software. Then, EM-Set, the EMMON engineering toolset will be presented. EM-Set includes a
network deployment planning, worst–case analysis and dimensioning, protocol simulation and automatic remote
programming and hardware testing tools. This toolset was crucial for the development of EMMON which was designed
to use standard commercially available technologies, while maintaining as much flexibility as possible to meet specific
applications requirements. Finally, the EMMON architecture has been validated through extensive simulation and
experimental evaluation, including a 300+ nodes testbed.