| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 9.32 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O Pacto ClimĆ”tico Europeu apresentado por parte da UniĆ£o Europeia (UE) visa atingir a neutralidade carbónica atĆ© ao ano de 2050. Atualmente, vĆ”rios paĆses estĆ£o a implementar estratĆ©gias de produção de energias alternativas, principalmente de fontes renovĆ”veis, cuja intermitĆŖncia, aumento da capacidade e a consequente injeção na rede elĆ©trica provoca desequilĆbrios e picos de tensĆ£o que tĆŖm de ser mitigados. O recurso Ć eletrólise para a produção de hidrogĆ©nio Ć© uma alternativa promissora para garantir o equilĆbrio das
redes. Dos vÔrios tipos de hidrogénio, o hidrogénio verde destaca-se por ser um método que recorre integralmente ao uso de fontes de energias renovÔveis. Desta forma, a UE apresentou a meta para a transição total para o hidrogénio verde até 2050 com uma capacidade total de 1300 GW. Dos diversos tipos de eletrolisadores destaca-se o eletrolisador do tipo PEMWE (Proton Exchange Membrane Water Electrolyser) pela sua capacidade de gestão dinâmica de cargas. Assim, com o objetivo de auxiliar o estudo do
impacte real da produção de hidrogénio verde numa rede elétrica foi efetuado todo o planeamento, projeção, desenvolvimento e respetiva validação de uma bancada de teste com a incorporação de um eletrolisador PEM. Inicialmente, procedeu-se à realização de um estudo de mercado que abrange todos os componentes utilizados, incluindo o desenvolvimento de esquemas de montagem, esquemas elétricos e hidrÔulicos em 2D e 3D, da estrutura da bancada de teste. Com o material selecionado, procedeu-se à configuração/calibração da instrumentação e à montagem completa da instalação elétrica e hidrÔulica na estrutura. Durante a fase de
montagem do equipamento, realizou-se a programação do software com recurso ao LabVIEW atravĆ©s das vĆ”rias bibliotecas de apoio, centralizando toda a comunicação dos vĆ”rios instrumentos num só programa. O programa desenvolvido permite o controlo manual e automatizado da bancada de teste, com o registo dos dados localmente e com a funcionalidade de envio dos mesmos para uma base de dados SQL. Após a conclusĆ£o da instalação de todo o material, com o objetivo de validar na Ćntegra os sistemas elĆ©tricos e hidrĆ”ulicos, procedeu-se a um teste automatizado de produção de hidrogĆ©nio, tendo-se retirado vĆ”rias ilaƧƵes sobre o funcionamento deste tipo de equipamentos.
The European Union (EU) presented the European Climate Pact, which seeks to achieve carbon neutrality by 2050. Currently, numerous countries are developing policies for the generation of alternative energies, primarily from renewable sources, whose intermittent nature, increased capacity, and subsequent injection into the electrical grid produce imbalances and voltage peaks that must be managed. The use of electrolysis to produce hydrogen is a viable solution for ensuring grid stability. Green hydrogen is unique among the numerous varieties of hydrogen since it is totally based on renewable energy sources. Thus, the EU has set a goal of achieving a thorough transition to green hydrogen by 2050, with a total production capacity of 1300 GW. Among the different types of electrolysers, the PEMWE (Proton Exchange Membrane Water Electrolyser) is notable for its dynamic load management ability. As a result, in order to aid in the investigation of the true impact of green hydrogen production on an electrical grid, all planning, projection, development, and validation of a test bench integrating a PEM electrolyser were completed. Initially, a market study was carried out on all of the components used, including the creation of assembly diagrams, electrical and hydraulic schematics in 2D and 3D for the test bench structure. The instrumentation was configured/calibrated using the selected materials, and the electrical and hydraulic installation on the structure was fully assembled. During the equipment building phase, the software was programmed in LabVIEW using multiple support libraries, combining all communication from the numerous instruments into a single program. The built program enables for both manual and automated control of the test bench, as well as local data recording and data transfer to a SQL database. Following the installation of all materials, an automated hydrogen production test was performed to properly validate the electrical and hydraulic systems. Several findings were reached regarding the operation of this type of equipment.
The European Union (EU) presented the European Climate Pact, which seeks to achieve carbon neutrality by 2050. Currently, numerous countries are developing policies for the generation of alternative energies, primarily from renewable sources, whose intermittent nature, increased capacity, and subsequent injection into the electrical grid produce imbalances and voltage peaks that must be managed. The use of electrolysis to produce hydrogen is a viable solution for ensuring grid stability. Green hydrogen is unique among the numerous varieties of hydrogen since it is totally based on renewable energy sources. Thus, the EU has set a goal of achieving a thorough transition to green hydrogen by 2050, with a total production capacity of 1300 GW. Among the different types of electrolysers, the PEMWE (Proton Exchange Membrane Water Electrolyser) is notable for its dynamic load management ability. As a result, in order to aid in the investigation of the true impact of green hydrogen production on an electrical grid, all planning, projection, development, and validation of a test bench integrating a PEM electrolyser were completed. Initially, a market study was carried out on all of the components used, including the creation of assembly diagrams, electrical and hydraulic schematics in 2D and 3D for the test bench structure. The instrumentation was configured/calibrated using the selected materials, and the electrical and hydraulic installation on the structure was fully assembled. During the equipment building phase, the software was programmed in LabVIEW using multiple support libraries, combining all communication from the numerous instruments into a single program. The built program enables for both manual and automated control of the test bench, as well as local data recording and data transfer to a SQL database. Following the installation of all materials, an automated hydrogen production test was performed to properly validate the electrical and hydraulic systems. Several findings were reached regarding the operation of this type of equipment.
Description
Keywords
Experimental bench Renewable energy Electrical grids Green hydrogen Electrolyser Hydrogen production Autonomous systems Databases Bancada experimental Energia renovÔvel Redes elétricas Hidrogénio verde Eletrolisador Produção de hidrogénio Sistemas autónomos Bases de dados
