Loading...
Research Project
Centre for Functional Ecology
Funder
Authors
Publications
Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils
Publication . Ma, Ying; Rajkumar, Mani; Oliveira, Rui S.; Zhang, Chang; Freitas, Helena
Phytoremediation has been considered as a promising technique to decontaminate polluted soils. However, climatic stress particularly salinity, is a potential threat to soil properties and plant growth, thus restricting the employment of this technology. The aim of this study was to access the impact of microbial inoculation on phytoremediation of nickel (Ni) contaminated saline soils using Helianthus annuus. Salt resistant plant beneficial bacterium (PBB) Pseudomonas libanensis TR1 and arbuscular mycorrhizal fungus (AMF) Claroideoglomus claroideum BEG210 were used. Inoculation of P. libanensis alone or in combination with C. claroideum significantly enhanced plant growth, changed physiological status (e.g. electrolyte leakage, chlorophyll, proline and malondialdehyde contents) as well as Ni and sodium (Na+) accumulation potential (e.g. uptake and translocation factor of Ni and Na+) of H. annuus under Ni and salinity stress either alone or in combination. These results revealed that bioaugmentation of microbial strains may serve as a preferred strategy for improving phytoremediation of metal-polluted saline soils.
Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops
Publication . Rocha, Inês; Ma, Ying; Souza-Alonso, Pablo; Vosátka, Miroslav; Freitas, Helena; Oliveira, Rui S.
Plant beneficial microbes (PBMs), such as plant growth-promoting bacteria, rhizobia, arbuscular mycorrhizal fungi, and Trichoderma, can reduce the use of agrochemicals and increase plant yield, nutrition, and tolerance to biotic-abiotic stresses. Yet, large-scale applications of PBM have been hampered by the high amounts of inoculum per plant or per cultivation area needed for successful colonization and consequently the economic feasibility. Seed coating, a process that consists in covering seeds with low amounts of exogenous materials, is gaining attention as an efficient delivery system for PBM. Microbial seed coating comprises the use of a binder, in some cases a filler, mixed with inocula, and can be done using simple mixing equipment (e.g., cement mixer) or more specialized/sophisticated apparatus (e.g., fluidized bed). Binders/fillers can be used to extend microbial survival. The most reported types of seed coating are seed dressing, film coating, and pelleting. Tested in more than 50 plant species with seeds of different dimensions, forms, textures, and germination types (e.g., cereals, vegetables, fruits, pulses, and other legumes), seed coating has been studied using various species of plant growth-promoting bacteria, rhizobia, Trichoderma, and to a lesser extent mycorrhizal fungi. Most of the studies regarding PBM applied via seed coating are aimed at promoting crop growth, yield, and crop protection against pathogens. Studies have shown that coating seeds with PBM can assist crops in improving seedling establishment and germination or achieving high yields and food quality, under reduced chemical fertilization. The right combination of biological control agents applied via seed coating can be a powerful tool against a wide number of diseases and pathogens. Less frequently, studies report seed coating being used for adaptation and protection of crops under abiotic stresses. Notwithstanding the promising results, there are still challenges mainly related with the scaling up from the laboratory to the field and proper formulation, including efficient microbial combinations and coating materials that can result in extended shelf-life of both seeds and coated PBM. These limitations need to be addressed and overcome in order to allow a wider use of seed coating as a cost-effective delivery method for PBM in sustainable agricultural systems.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UID/BIA/04004/2019