Loading...
 Research Project 
MICROBIAL BIOELECTROCHEMICAL REMEDIATION OF CHLORINATED ORGANICS
Funder
Authors
Publications
Natural Magnetite Minerals Enhance 1,2-Dichloroethane Reductive Dechlorination
Publication . Leitão, Patrícia; Tucci, Matteo; Cruz Viggi, Carolina; Nouws, Henri; Danko, Anthony S.; Aulenta, Federico
Contamination of soil and groundwater by chlorinated solvents is an environmental issue of primary concern. Recently, electrically conductive iron particles have been proposed as a novel approach to accelerate anaerobic bioremediation processes. In fact, it was demonstrated that conductive particles facilitate the exchange of electrons between microorganisms via Direct Interspecies Electron Transfer (DIET) processes, thus enhancing the pollutant-degrading potential of the microbial community. However, the use of natural minerals in this context has not been reported so far. In this study, we applied, for the first time, natural magnetite and hematite to accelerate the reductive dechlorination of 1,2-dichloroethane by an enrichment culture in lab-scale anaerobic microcosms. After four feeding cycles, low magnetite-amended microcosms (13 mg/L) yielded the highest rate of 1,2-DCA reductive dechlorination and reduced methanogenic activity. By contrast, hematite did not display any apparent stimulatory effect. Surprisingly, in the presence of higher amounts of iron oxides, a weaker effect was obtained, probably because iron(III) present in the minerals competed for the electrons necessary for reductive dechlorination. For all microcosms, the concentration of the toxic byproduct vinyl chloride was negligible throughout the whole study. The SEM/EDS analysis confirmed the close interaction between the conductive iron oxide particles and the dechlorinating bacteria. This work opens the possibility of using natural conductive minerals for bioremediation applications as well as shedding light on the previously unrecognized role of such minerals in contaminated ecosystems
Impact of magnetite nanoparticles on the syntrophic dechlorination of 1,2-dichloroethane
Publication . Leitão, Patrícia; Aulenta, Federico; Rossetti, Simona; Nouws, Henri; Danko, Anthony S.
In anaerobic environments microorganisms exchange electrons with community members and with soil and groundwater compounds. Interspecies electron transfer (IET) occurs by several mechanisms: diffusion of redox compounds or direct contact between cells. This latter mechanism may be facilitated by the presence of conductive nanoparticles (NP), possibly serving as electron conduits among microorganisms. Our study examined the effect of magnetite (Fe3O4) NP on the dechlorination of 1,2-dichloroethane (1,2-DCA) by a mixed-culture. The addition of NP (170 mg L− 1 total Fe) enhanced the acetate-driven reductive dechlorination of 1,2-DCA to harmless ethene (via reductive dihaloelimination) up to 3.3-times (2.3 μeq L− 1 d− 1 vs. 0.7 μeq L− 1 d− 1), while decreasing the lag time by 0.8 times (23 days) when compared to unamended (magnetite-free) microcosms. Dechlorination activity was correlated with the abundance of Dehalococcoides mccartyi, which accounted up to 50% of total bacteria as quantified by CARD-FISH analysis, pointing to a key role of this microorganism in the process. Given the widespread abundance of conductive minerals in the environment, the results of this study may provide new insights into the fate of 1,2-DCA and suggest new tools for its remediation by linking biogeochemical mechanisms.
Bioelectrochemical Dechlorination of 1,2-DCA with an AQDS-Functionalized Cathode Serving as Electron Donor
Publication . Leitão, P.; Nouws, Hendrikus; Danko, A. S.; Aulenta, F.
In the present study we describe a simple method to immobilize the redox mediator anthraquinone‐2,6‐disulfonate (AQDS) at the surface of graphite electrodes, by means of a commercial anion exchange membrane. Cyclic voltammetry experiments confirmed the efficacy of the immobilization protocol and the long‐term (over 70 days) electrochemical stability of the AQDS‐functionalized electrode. Potentiostatic (–300 mV vs. SHE) batch experiments proved the capability of the electrode in accelerating the bioelectrochemical reductive dechlorination of the groundwater contaminant 1,2‐dichloroethane (1,2‐DCA) to harmless ethene by a mixed microbial culture, by serving as electron donor in the process. Considering the reported broad range of anodic and cathodic reactions catalyzed by AQDS, the herein described functionalized electrode has a remarkable potential for application in the environmental and industrial sector.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Funding Award Number
SFRH/BD/87312/2012
