Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Electronic Conduction Mechanisms and Defects in Polycrystalline Antimony Selenide
Publication . Cifuentes, N.; Ghosh, Santunu; Shongolova, A.; Correia, M. R.; Salomé, P. M. P.; Fernandes, P. A.; Ranjbar, S.; Garud, S.; Vermang, B.; Ribeiro, G. M.; González, J. C.
A study of the electronic conduction mechanisms and electrically active defects in polycrystalline Sb2Se3 is presented. It is shown that for temperatures above 200 K, the electrical transport is dominated by thermal emission of free holes, ionized from shallow acceptors, over the intergrain potential barriers. In this temperature range, the temperature dependence of the mobility of holes, limited by the intergrain potential barriers, is the main contributor to the observed thermal activation energy of the conductivity of 485 meV. However, at lower temperatures, nearest-neighbor and Mott variable range hopping transport in the bulk of the grains turn into the dominant conduction mechanisms. Important parameters of the electronic structure of the Sb2Se3 thin film such as the average intergrain potential barrier height ϕ = 391 meV, the intergrain trap density Nt = 3.4 × 1011 cm−2, the shallow acceptor ionization energy EA0 = 124 meV, the acceptor density NA = 1 × 1017 cm−3, the net donor density ND = 8.3 × 1016 cm−3, and the compensation ratio k = 0, 79 were determined from the analysis of these measurements.
Non‐Newtonian Thermosensitive Nanofluid Based on Carbon Dots Functionalized with Ionic Liquids
Publication . Gonçalves, Helena M R; Pereira, Rui F. P.; Lepleux, Emmanuel; Pacheco, Louis; Valente, Artur J. M.; Duarte, Abel J.; Zea Bermudez, Verónica
Non-Newtonian nanofluids present outstanding features in terms of energy transfer and conductivity with high application in numerous areas. In this work, non-Newtonian nanofluids based on carbon dots (Cdots) functionalized with ionic liquids (ILs) are developed. The nanofluids are produced using a simple, single-step method where the raw materials for the Cdots synthesis are glucose and waste biomass (chitin from crab shells). The use of ILs as both reaction media and functionalization molecules allows for the development of a new class of nanofluids, where the ILs on the Cdots surface represent the base-fluid. Here, the well-known benign IL 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and a novel home-made IL (1-tosylate-3-methyl-imidazolium triflate) [Tmi][Trif] are used. The nanofluids obtained from both substrates show, apart from high conductivity and viscosity, light absorption, and good wettability, an appealing thermal sensitivity behavior. This thermal sensitivity is preserved even when applied as thin films on glass slides and can be boosted using the surface plasmon resonance effect. The results reported demonstrate that the new Cdots/IL-based nanofluids constitute a versatile and cost-effective route for achieving high-performance thermosensitive non-Newtonian sustainable nanofluids with tremendous potential for the energy coatings sector and heat transfer film systems.
A morphological and electronic study of ultrathin rear passivated Cu(In,Ga)Se2 solar cells
Publication . Bose, S.; Cunha, J.M.V.; Borme, J.; Chen, W.C.; Nilsson, N.S.; Teixeira, J.P.; Gaspar, J.; Leitão, J.P.; Edoff, M.; Fernandes, P. A.; Salomé, P.M.P.
The effects of introducing a passivation layer at the rear of ultrathin Copper Indium Gallium di-Selenide Cu(In,Ga)Se2 (CIGS) solar cells is studied. Point contact structures have been created on 25 nm Al2O3 layer using e-beam lithography. Reference solar cells with ultrathin CIGS layers provide devices with average values of light to power conversion efficiency of 8.1% while for passivated cells values reached 9.5%. Electronic properties of passivated cells have been studied before, but the influence of growing the CIGS on Al2O3 with point contacts was still unknown from a structural and morphological point of view. Scanning Electron Microscopy, X-ray Diffraction and Raman spectroscopy measurements were performed. These measurements revealed no significant morphological or structural differences in the CIGS layer for the passivated samples compared with reference samples. These results are in agreement with the similar values of carrier density (~8 × 1016 cm-3) and depletion region (~160 nm) extracted using electrical measurements. A detailed comparison between both sample types in terms of current-voltage, external quantum efficiency and photoluminescence measurements show very different optoelectronic behaviour which is indicative of a successful passivation. SCAPS simulations are done to explain the observed results in view of passivation of the rear interface.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

5876

Funding Award Number

UID/CTM/50025/2013

ID