Loading...
Research Project
Centre of Biological Engineering - University of Minho
Funder
Authors
Publications
Involvement of the Iron-Regulated Loci hts and fhuC in Biofilm Formation and Survival of Staphylococcus epidermidis within the Host
Publication . Oliveira, Fernando; Lima, Tânia; Correia, Alexandra; Silva, Ana Margarida; Soares, Cristina; Morais, Simone; Weißelberg, Samira; Vilanova, Manuel; Rohde, Holger; Cerca, Nuno
Staphylococcus epidermidis is a major nosocomial pathogen with a remarkable ability to persist on indwelling medical devices through biofilm formation. Nevertheless, it remains intriguing how this process is efficiently achieved under the host’s harsh conditions, where the availability of nutrients, such as essential metals, is scarce. Following our previous identification of two iron-regulated loci putatively involved in iron transport, hts and fhuC, we assessed here their individual contribution to both bacterial physiology and interaction with host immune cells. Single deletions of the hts and fhuC loci led to marked changes in the cell iron content, which were partly detrimental for planktonic growth and strongly affected biofilm formation under iron-restricted conditions. Deletion of each of these two loci did not lead to major changes in S. epidermidis survival within human macrophages or in an ex vivo human blood model of bloodstream infection. However, the lack of either hts or fhuC loci significantly impaired bacterial survival in vivo in a murine model of bacteremia. Collectively, this study establishes, for the first time, the pivotal role of the iron-regulated loci hts and fhuC in S. epidermidis biofilm formation and survival within the host, providing relevant information for the development of new targeted therapeutics against this pathogen
Metal(loid) oxide (Al2O3, Mn3O4, SiO2 and SnO2) nanoparticles cause cytotoxicity in yeast via intracellular generation of reactive oxygen species
Publication . Sousa, Cátia A.; Soares, Helena M. V. M.; Soares, Eduardo
In this work, the physicochemical characterization of five (Al2O3, In2O3, Mn3O4, SiO2 and SnO2) nanoparticles (NPs) was carried out. In addition, the evaluation of the possible toxic impacts of these NPs and the respective modes of action were performed using the yeast Saccharomyces cerevisiae. In general, in aqueous suspension, metal(loid) oxide (MOx) NPs displayed an overall negative charge and agglomerated; these NPs were practically insoluble (dissolution < 8%) and did not generate detectable amounts of reactive oxygen species (ROS) under abiotic conditions. Except In2O3 NPs, which did not induce an obvious toxic effect on yeast cells (up to 100 mg/L), the other NPs induced a loss of cell viability in a dose-dependent manner. The comparative analysis of the loss of cell viability induced by the NPs with the ions released by NPs (NPs supernatant) suggested that SiO2 toxicity was mainly caused by the NPs themselves, Al2O3 and SnO2 toxic effects could be attributed to both the NPs and the respective released ions and Mn3O4 harmfulness could be mainly due to the released ions. Al2O3, Mn3O4, SiO2 and SnO2 NPs induced the loss of metabolic activity and the generation of intracellular ROS without permeabilization of plasma membrane. The co-incubation of yeast cells with MOx NPs and a free radical scavenger (ascorbic acid) quenched intracellular ROS and significantly restored cell viability and metabolic activity. These results evidenced that the intracellular generation of ROS constituted the main cause of the cytotoxicity exhibited by yeasts treated with the MOx NPs. This study highlights the importance of a ROS-mediated mechanism in the toxicity induced by MOx NPs.
Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms
Publication . Sousa, Cátia A.; Soares, Helena M.V.M.; Soares, Eduardo V.
The increasing use of nanoparticles (NPs) unavoidably enhances their unintended introduction into the aquatic systems, raising concerns about their nanosafety. This work aims to assess the toxicity of five oxide NPs (Al2O3, Mn3O4, In2O3, SiO2 and SnO2) using the freshwater alga Pseudokirchneriella subcapitata as a primary producer of ecological relevance. These NPs, in OECD medium, were poorly soluble and unstable (displayed low zeta potential values and presented the tendency to agglomerate). Using the algal growth inhibition assay and taking into account the respective 72 h-EC50 values, it was possible to categorize the NPs as: toxic (Al2O3 and SnO2); harmful (Mn3O4 and SiO2) and non-toxic/non-classified (In2O3). The toxic effects were mainly due to the NPs, except for SnO2 which toxicity can mainly be attributed to the Sn ions leached from the NPs. A mechanistic study was undertaken using different physiological endpoints (cell membrane integrity, metabolic activity, photosynthetic efficiency and intracellular ROS accumulation). It was observed that Al2O3, Mn3O4 and SiO2 induced an algistatic effect (growth inhibition without loss of membrane integrity) most likely as a consequence of the cumulative effect of adverse outcomes: i) reduction of the photosynthetic efficiency of the photosystem II (ФPSII); ii) intracellular ROS accumulation and iii) loss of metabolic activity. SnO2 NPs also provoked an algistatic effect probably as a consequence of the reduction of ФPSII since no modification of intracellular ROS levels and metabolic activity were observed. Altogether, the results here presented allowed to categorize the toxicity of the five NPs and shed light on the mechanisms behind NPs toxicity in the green alga P. subcapitata.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UID/BIO/04469/2019