Loading...
Research Project
Marine robotics research infrastructure network
Funder
Authors
Publications
Wireless radio link design to improve nearshore communication with surface nodes on tidal waters
Publication . Gutiérrez Gaitán, Miguel; d'Orey, Pedro; Santos, Pedro Miguel; Ribeiro, Manuel; Pinto, Luís; Almeida, Luís; Sousa, J. Borges de
Wireless radio links deployed over aquatic areas (e.g., sea, estuaries or harbors) are affected by the conductive properties of the water surface, strengthening signal reflections and increasing interference effects. Recurrent natural phenomena such as tides or waves cause shifts in the water level that, in turn, change the interference patterns and cause varying impairments to propagation over water surfaces. In this work, we aim at mitigating the detrimental impact of tides on the quality of a line-of-sight over-water link between an onshore station and a surface node, targeting mission data transfer scenarios. We consider different types of surface nodes, namely, autonomous underwater vehicles, unmanned surface vehicles and buoys, and we use WiFi technology in both 2.4 GHz and 5 GHz frequency bands. We propose two methods for link distance/height design: (i) identifying a proper Tx-Rx distance for improved link quality at each point of the tidal cycle; (ii) defining the height/distance that minimizes the path loss averaged during the whole tidal cycle.Experimental results clearly show the validity of our link quality model and the interest of method (i). Analytical results confirm method (ii) and show that it outperforms, in both frequency bands, the common practice of placing onshore antennas at the largest possible height and/or surface nodes at a short but arbitrary distance.
Minimal time delivery of multiple robots
Publication . Aguiar, Miguel; Silva, Jorge; Sousa, Joao Borges de
Consider a set of autonomous vehicles, each one with a preassigned task to start at a given region. Due to energy constraints, and in order to minimize the overall task completion time, these vehicles are deployed from a faster carrier vehicle. This paper develops a dynamic programming (DP) based solution for the problem of finding the optimal deployment location and time for each vehicle, and for a given sequence of deployments, so that the global mission duration is minimal. The problem is specialized for ocean-going vehicles operating under time-varying currents. The solution approach involves solving a sequence of optimal stopping problems that are transformed into a set variational inequalities through the application of the dynamic programming principle (DPP). The optimal trajectory for the carrier and the optimal deployment location and time for each vehicle to be deployed are obtained in feedback-form from the numerical solution of the variational inequalities. The solution is computed with our open source parallel implementation of the fast sweeping method. The approach is illustrated with two numerical examples.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
European Commission
Funding programme
H2020
Funding Award Number
731103