Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Gasification of Cork Wastes in a Fluidized Bed Reactor
    Publication . Rodrigues, Sara; Almeida, Ana F.; Ribeiro, A.M.; Neto, Paula; Ramalho, Elisa; Pilão, Rosa Maria
    Biomass gasification has been identified as an option for energetic valorisation of organic wastes. This work aimed to study the gasification of cork industry wastes using a semi-batch fluidized bed reactor. The experimental tests were performed using air as oxidizing agent and sand particles as bed material. The heating was performed with an electrical resistance of 3 kW. The effect of biomass load (2–5.6 g), and bed temperature (780–900 °C) on gasification performance was evaluated using an air flow rate of 0.092 g/s. Samples of producer gas were analysed by a gas chromatograph fitted with a thermal conductivity detector. The detected and quantified compounds on producer gas were H2, CO, CH4 and CO2. Temperature and mass load had a predominant role in gasification performance and all gasification parameters increased with the temperature rise. The increase of mass resulted in a decrease of carbon conversion efficiency, cold gas efficiency and dry gas yield. Best results were obtained with mass load at a range of of 2–4 g, working at 850 °C. The results showed that cork particles are a sustainable raw material for gasification processes.
  • Co-Gasification of Crude Glycerol/Animal Fat Mixtures
    Publication . Almeida, Ana F.; Pilão, Rosa Maria; Ribeiro, Albina; Ramalho, Elisa; Pinho, Carlos
    The aim of this work was to assess the technical viability of glycerol/fat co-gasification. The gasification performance was studied in a downflow fixed bed reactor using activated alumina particles as bed material and steam as oxidizing agent. The effect of gasification temperature, from 800 to 950 °C was studied with a feed mixture with 10% (w/w) of animal fat. The influence of fat incorporation on the feedstock in the overall gasification process was also performed, using 3% (w/w) and 5% (w/w) of fat in feed mixtures. Samples of dry gas from the gasifier were collected and analyzed by gas chromatography in order to determine the CO, CO2, CH4, and H2 content. The best results were obtained using the highest tested temperature, 950 °C, and using 3% (w/w) of animal fat in the feed mixture. The overall results revealed that the co-gasification of glycerol/animal fat mixtures seems to be a feasible technical option