Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Synthesis and antioxidant activity of long chain alkyl hydroxycinnamatesPublication . Menezes, Jose C.J.M.D.S; Kamat, Shrivallabh P; Cavaleiro, Jose A.S.; Gaspar, Alexandra; Garrido, Jorge; Borges, FernandaLong chain alkyl hydroxycinnamates (8e21) were synthesized from the corresponding half esters of malonic acid (5e7) and benzaldehyde derivatives by Knoevenagel condensation. The total antioxidant capacity of these hydroxycinnamyl esters was evaluated using DPPH and ABTS assays. The observed antioxidant activity was highest for esters of caffeic acid followed by sinapic esters and ferulic esters. The parameters for drug-likeness of these hydroxycinnamyl esters were also evaluated according to the Lipinski’s ‘rule-of-five’. All the ester derivatives were found to violate one of the Lipinski’s parameters (cLogP >5), even though they have been found to be soluble in protic solvents. The predictive topological polar surface area (TPSA) data allow concluding that they could have a good capacity for penetrating cell membranes. Therefore, one can propose these novel lipophilic compounds as potential antioxidants for tackling oxidative processes.
- Exploring nature profits: development of novel and potent lipophilic antioxidants based on galloylecinnamic hybridsPublication . Teixeira, José; Silva, Tiago; Benfeito, Sofia; Gaspar, Alexandra; Garrido, E. Manuela; Garrido, Jorge; Borges, FernandaPhenolic acids are ubiquitous antioxidants accounting for approximately one third of the phenolic compounds in our diet. Their importance was supported by epidemiological studies that suggest an inverse relationship between dietary intake of phenolic antioxidants and the occurrence of diseases, such as cancer and neurodegenerative disorders. However, until now, most of natural antioxidants have limited therapeutic success a fact that could be related with their limited distribution throughout the body and with the inherent difficulties to attain the target sites. The development of phenolic antioxidants based on a hybrid concept and structurally based on natural hydroxybenzoic (gallic acid) and hydroxycinnamic (caffeic acid) scaffolds seems to be a suitable solution to surpass the mentioned drawbacks. Galloylecinnamic hybrids were synthesized and their antioxidant activity as well as partition coefficients and redox potentials evaluated. The structureepropertyeactivity relationship (SPAR) study revealed the existence of a correlation between the redox potentials and antioxidant activity. The galloylecinnamic acid hybrid stands out as the best antioxidant supplementing the effect of a blend of gallic acid plus caffeic acid endorsing the hypothesis that the whole is greater than the sum of the parts. In addition, some hybrid compounds possess an appropriate lipophilicity allowing their application as chain-breaking antioxidant in biomembranes or other type of lipidic systems. Their predicted ADME properties are also in accordance with the general requirements for drug-like compounds. Accordingly, these phenolic hybrids can be seen as potential antioxidants for tackling the oxidative status linked to the neurodegenerative, inflammatory or cancer processes.