Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • An Integrated Lateral and Longitudinal Look Ahead Controller for Cooperative Vehicular Platooning
    Publication . Vasconcelos Filho, Ênio; Koubaa, Anis; Severino, Ricardo; Tovar, Eduardo
    Cooperative Vehicular Platooning (CoVP), has been emerging as a challenging Intelligent Traffic Systems application, promising to bring-about several safety and societal benefits. Relying on V2V communications to control such cooperative and automated actions brings several advantages. In this work, we present a Look Ahead PID controller for CoVP that solely relies upon V2V communications, together with a method to reduce the disturbance propagation in the platoon. The platooning controller also implements a solution to solve the cutting corner problem, keeping the platooning alignment. We evaluate its performance and limitations in realistic simulation scenarios, analyzing the stability and lateral errors of the CoVP, proving that such V2V enabled solutions can be effectively implemented.
  • Improving the Performance of Cooperative Platooning with Restricted Message Trigger Thresholds
    Publication . Vasconcelos Filho, Ênio; Santos, Pedro Miguel; Severino, Ricardo; Koubaa, Anis; Tovar, Eduardo
    Cooperative Vehicular Platooning (Co-VP) is one of the most prominent and challenging applications of Intelligent Traffic Systems. To support such vehicular communications, the ETSI ITS G5 standard specifies event-based communication profiles, triggered by kinematic parameters such as speed. The standard defines a set of threshold values for such triggers but no careful assessment in realistic platooning scenarios has been done to confirm the suitability of such values. In this work, we investigate the safety and performance limitations of such parameters in a realistic platooning co-simulation environment. We then propose more conservative threshold values, that we formalize as a new profile, and evaluate their impact in the longitudinal and lateral behaviour of a vehicular platoon as it carries out complex driving scenarios. Furthermore, we analyze the overhead introduced in the network by applying the new threshold values. We conclude that a pro-active message transmission scheme leads to improved platoon performance for highway scenarios, notably an increase greater than 40% in the longitudinal performance of the platoon, while not incurring in a significant network overhead. The obtained results also demonstrated an improved platoon performance for semi-urban scenarios, including obstacles and curves, where the heading error decreases in 26%, with slight network overhead.