Repository logo
 
Loading...
Profile Picture
Person

Morais Júnior, Wilson Galvão

Search Results

Now showing 1 - 2 of 2
  • Antioxidant potential of extracts of Chromochloris zofingiensis cultivated in pilot-scale outdoor tubular photobioreactors under nitrogen limitation
    Publication . Corrêa, Priscila S.; M. Júnior, Wilson G. de; Caetano, Nídia
    Chromochloris zofingiensis is known to be able to produce large amounts of astaxanthin and also to coproduce other molecules with antioxidant properties. Outdoor cultivation is the cheapest way for large-scale production; however, the unstable weather conditions can hinder the productivity of the biomass and the target product. The final biomass (0.92 g·L−1) and total carotenoids (0.55 mg·g−1) concentration achieved in outdoor cultivation (i.e., during autumn in Porto, Portugal) had no statistically significant difference compared to control cultivation (i.e., constant temperature, 18 °C, and light intensity, 4000 lx) (1.36 g·L−1 and 0.56 mg·g−1, respectively), however the biomass productivity was about threefold lower. Regarding the antioxidant potential, methanolic extracts from outdoor cultivation presented one of the highest values for radical scavenging ability (44.2 %) and ferrous-ion chelating ability (59.1 %), similarly to the results obtained by ethanolic extracts from indoor cultivation under nitrogen limitation. Highest total antioxidant capacities were observed in ethanolic extracts varying from 120.0 to 185.2 mg GAE·g−1.
  • Microalgae Biomolecules: Extraction, Separation and Purification Methods
    Publication . Corrêa, Priscila S.; Morais Júnior, Wilson Galvão; Martins, António A.; Caetano, Nídia; Mata, Teresa M.
    Several microalgae species have been exploited due to their great biotechnological potential for the production of a range of biomolecules that can be applied in a large variety of industrial sectors. However, the major challenge of biotechnological processes is to make them economically viable, through the production of commercially valuable compounds. Most of these compounds are accumulated inside the cells, requiring efficient technologies for their extraction, recovery and purification. Recent improvements approaching physicochemical treatments (e.g., supercritical fluid extraction, ultrasound-assisted extraction, pulsed electric fields, among others) and processes without solvents are seeking to establish sustainable and scalable technologies to obtain target products from microalgae with high efficiency and purity. This article reviews the currently available approaches reported in literature, highlighting some examples covering recent granted patents for the microalgae’s components extraction, recovery and purification, at small and large scales, in accordance with the worldwide trend of transition to bio-based products.