Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Appraisal of a new potential antioxidants-rich nutraceutical ingredient from chestnut shells through in-vivo assays – A targeted metabolomic approach in phenolic compoundsPublication . Pinto, Diana; Almeida, Andreia; López-Yerena, Anallely; Pinto, Soraia; Sarmento, Bruno; Lamuela-Raventós, Rosa; Vallverdú-Queralt, Anna; Delerue-Matos, Cristina; Rodrigues, FranciscaChestnut (Castanea sativa) shells (CSS) are a source of bioactive compounds with well demonstrated in-vitro antioxidant properties. Nevertheless, no in-vivo studies have already evaluated this effect. This study evaluated the effects of the oral daily administration of an eco-friendly CSS extract (50 and 100 mg/kg per body weight (b. w.)) to rats regarding in-vivo antioxidant activity, glucose and lipids levels, and metabolomic profiling of poly- phenols by LC-ESI-LTQ-Orbitrap-MS. The results demonstrated the in-vivo antioxidant properties in the animals liver, kidney and blood serum, as well as protective effects against hemolysis and rising of blood glucose and lipids levels. New insights on metabolomic profiling of polyphenols proved their absorption and further biotransformation by phase I (hydrogenation and hydroxylation) and II reactions (glucuronidation, methylation and sulfation). This is the first study that attempted to validate a novel nutraceutical ingredient extracted from CSS by in-vivo assays, corroborating the outcomes screened by in-vitro assays
- Development and Characterization of Functional Cookies Enriched with Chestnut Shells Extract as Source of Bioactive Phenolic CompoundsPublication . Pinto, Diana; Moreira, Manuela M.; Vieira, Elsa F.; Švarc-Gajić, Jaroslava; Vallverdú-Queralt, Anna; Brezo-Borjan, Tanja; Delerue-Matos, Cristina; Rodrigues, FranciscaChestnut (Castanea sativa) shells (CSs), an undervalued agro-industrial biowaste, have arisen as a source of bioactive compounds with promising health-promoting effects. This study attempted, for the first time, to develop a functional food, namely cookies, using a CS extract obtained by an eco-friendly technology (subcritical water extraction). The cookies were characterized regarding their nutritional composition, total phenolic and flavonoid contents (TPC and TFC, respectively), antioxidant/antiradical activities, phenolic profile, and sensory evaluation. The results demonstrated that the CS-extract-enriched cookies were mainly composed of carbohydrates (53.92% on dry weight (dw)), fat (32.62% dw), and fiber (5.15% dw). The phenolic profile outlined by HPLC-PDA revealed the presence of phenolic acids, flavonoids, and hydrolysable tannins, attesting to the high TPC and TFC. The in vitro antioxidant/antiradical effects proved the bioactivity of the functional cookies, while the sensory evaluation unveiled excellent scores on all attributes (≥6.25). The heatmap diagram corroborated strong correlations between the TPC and antioxidant/antiradical properties, predicting that the appreciated sensory attributes were closely correlated with high carbohydrates and phenolic compounds. This study encourages the sustainable recovery of antioxidants from CSs and their further employment as an active nutraceutical ingredient in functional cookies.