Browsing by Author "Vermang, B."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Cu(In,Ga)Se2 based ultrathin solar cells the pathway from lab rigid to large scale flexible technologyPublication . Lopes, T. S.; Teixeira, J. P.; Curado, M. A.; Ferreira, B. R.; Oliveira, A. J. N.; Cunha, J. M. V.; Monteiro, M.; Violas, A.; Barbosa, J. R. S.; Sousa, P. C.; Çaha, I.; Borme, J.; Oliveira, K.; Ring, J.; Chen, W. C.; Zhou, Y.; Takei, K.; Niemi, E.; Deepak, F. L.; Edoff, M.; Brammertz, G.; Fernandes, P. A.; Vermang, B.; Salomé, P. M. P.The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se2 based solar cells is shown. The fabrication used an industry scalable lithography technique—nanoimprint lithography (NIL)—for a 15 × 15 cm2 dielectric layer patterning. Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography (EBL) patterning, using rigid substrates. The NIL patterned device shows similar performance to the EBL patterned device.The impact of the lithographic processes in the rigid solar cells’ performance were evaluated via X-ray Photoelectron Spectroscopy and through a Solar Cell Capacitance Simulator. The device on stainless-steel showed a slightly lower performance than the rigid approach, due to additional challenges of processing steel substrates, even though scanning transmission electron microscopy did not show clear evidence of impurity diffusion. Notwithstanding, time-resolved photoluminescence results strongly suggested elemental diffusion from the flexible substrate. Nevertheless, bending tests on the stainless-steel device demonstrated the mechanical stability of the CIGS-based device.
- Cu(In,Ga)Se2 based ultrathin solar cells the pathway from lab rigid to large scale flexible technologyPublication . Lopes, T.S.; Teixeira, J. P.; Curado, M. A.; Ferreira, B. R.; Oliveira, A. J. N.; Cunha, J. M. V.; Monteiro, M.; Violas, A.; Barbosa, J. R. S.; Sousa, P. C.; Çaha, I.; Borme, J.; Oliveira, K.; Ring, J.; Chen, W. C.; Zhou, Y.; Takei, K.; Niemi, E.; Deepak, F. L.; Edoff, M.; Brammertz, G.; Fernandes, P. A.; Vermang, B.; Salomé, P. M. P.The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se2 based solar cells is shown. The fabrication used an industry scalable lithography technique—nanoimprint lithography (NIL)—for a 15 × 15 cm2 dielectric layer patterning. Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography (EBL) patterning, using rigid substrates. The NIL patterned device shows similar performance to the EBL patterned device.The impact of the lithographic processes in the rigid solar cells’ performance were evaluated via X-ray Photoelectron Spectroscopy and through a Solar Cell Capacitance Simulator. The device on stainless-steel showed a slightly lower performance than the rigid approach, due to additional challenges of processing steel substrates, even though scanning transmission electron microscopy did not show clear evidence of impurity diffusion. Notwithstanding, time-resolved photoluminescence results strongly suggested elemental diffusion from the flexible substrate. Nevertheless, bending tests on the stainless-steel device demonstrated the mechanical stability of the CIGS-based device.
- Electronic Conduction Mechanisms and Defects in Polycrystalline Antimony SelenidePublication . Cifuentes, N.; Ghosh, Santunu; Shongolova, A.; Correia, M. R.; Salomé, P. M. P.; Fernandes, P. A.; Ranjbar, S.; Garud, S.; Vermang, B.; Ribeiro, G. M.; González, J. C.A study of the electronic conduction mechanisms and electrically active defects in polycrystalline Sb2Se3 is presented. It is shown that for temperatures above 200 K, the electrical transport is dominated by thermal emission of free holes, ionized from shallow acceptors, over the intergrain potential barriers. In this temperature range, the temperature dependence of the mobility of holes, limited by the intergrain potential barriers, is the main contributor to the observed thermal activation energy of the conductivity of 485 meV. However, at lower temperatures, nearest-neighbor and Mott variable range hopping transport in the bulk of the grains turn into the dominant conduction mechanisms. Important parameters of the electronic structure of the Sb2Se3 thin film such as the average intergrain potential barrier height ϕ = 391 meV, the intergrain trap density Nt = 3.4 × 1011 cm−2, the shallow acceptor ionization energy EA0 = 124 meV, the acceptor density NA = 1 × 1017 cm−3, the net donor density ND = 8.3 × 1016 cm−3, and the compensation ratio k = 0, 79 were determined from the analysis of these measurements.