Browsing by Author "Soares, Pedro Francisco de Borges Castro de Rodrigues"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine LearningPublication . Soares, Pedro Francisco de Borges Castro de Rodrigues; Martins, António Constantino LopesO crescimento exponencial do comércio eletrónico trouxe inúmeras vantagens e oportunidades ao facilitar o estilo de vida dos seres humanos. No entanto, deu também origem a um grave problema: a fraude online. Com o propósito de colmatar este problema, este trabalho aborda a necessidade de desenvolver sistemas de deteção de fraude complexos no âmbito do comércio eletrónico. Após uma revisão abrangente da literatura, foram identificadas e implementadas técnicas que contribuíram para a melhoria dos projetos existentes, permitindo uma análise comparativa mais precisa. Neste contexto, os algoritmos de RF, LR, SVM, KNN, DT, LSTM e CNN, por serem os mais adequados a sistemas de classificação pela sua versatilidade e capacidade de aprender padrões complexos nos dados, foram aplicados a três conjuntos de dados distintos. Para avaliar rigorosamente os modelos propostos, o conjunto de dados foi dividido em 70% de dados para treino e os restantes 30% para teste. Cada um dos conjuntos de dados apresenta características específicas, de forma a avaliar o impacto de técnicas de oversampling e undersampling. Os algoritmos foram aplicados também aos mesmos conjuntos com os dados normalizados, para inferir quais os modelos que beneficiam desta normalização. Os resultados demonstraram que os modelos RF e CNN apresentaram um desempenho superior em comparação com os restantes algoritmos testados. Estes algoritmos foram posteriormente otimizados com a exploração dos hiper-parâmetros respetivos, o que permitiu melhorar o desempenho do modelo e, por sua vez, alcançar resultados de maior qualidade. A utilização de inteligência artificial na deteção de fraude no comércio eletrónico é fundamental para proteger os interesses tanto das empresas como dos consumidores. Este trabalho teve como foco principal contribuir para o avanço dos sistemas de deteção de transações fraudulentas ao fornecer informações sobre pontos positivos e negativos de vários algoritmos de machine learning no contexto do problema em questão.