Browsing by Author "Soares, António Alves"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Biocomplementation of SVE to achieve clean-up goals in soils contaminated with toluene and xylenePublication . Soares, António Alves; Pinho, Maria Teresa; Albergaria, José Tomás; Domingues, Valentina F.; Alvim-Ferraz, Maria da Conceição M.; Delerue-Matos, CristinaSoil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.
- Green zero valent iron nanoparticles dispersion through a sandy column using different injection sequencesPublication . Soares, António Alves; Ramos, Sandra; Albergaria, José Tomás; Delerue-Matos, CristinaThe contamination of soils is a global environmental problem that urges an increased effort to recover polluted sites. In Europe, there are an estimated 20,000 polluted sites that need to be remediated and around 350,000 sites that are classified as potentially contaminated by the European Environment Agency (EEA). Remediation is a part of the solution to this problem, requiring the most innovative and sustainable technologies. In this context, the use of zero valent iron nanoparticles (nZVI) is a promising, low cost and efficient technology for the remediation of soil and groundwater contaminated with a wide range of organic and inorganic pollutants. Among the nZVIs, the ones produced using Green synthesis methods (green nZVIs (gnZVI)) using natural extracts, such as green tea, are increasingly considered an alternative technology for the future. However, there are issues related to the application of gnZVI in soil that are still not fully understood, requiring further research, among these is the study of their transport in soils. Therefore, this work aims to study the transport of gnZVIs in sandy soils under diverse conditions such as soil particle size, soil saturation level and injection sequence. Several experiments were performed in an acrylic column with two sandy soils with different particle sizes (between 0.5 and 1.0 mm and higher than 1.0 mm), using two distinct water saturation conditions (saturated and dry) and four injection sequences. After these tests the distribution of the gnZVI along the soil column was determined by atomic absorption spectroscopy. This work allowed concluding that the injection sequence might be one of the most important factors influencing the rate of nZVI dispersion through a sandy column. According to the results it was possible to propose, for distinct types of contamination (deep, superficial, hot spot or dispersed), the most appropriate injection sequence.
- Remediation of soils combining soil vapor extraction and bioremediation: benzenePublication . Soares, António Alves; Albergaria, José Tomás; Domingues, Valentina F.; Alvim-Ferraz, Maria da Conceição M.; Delerue-Matos, CristinaThis work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase.
- Sequential application of soil vapor extraction and bioremediation processes for the remediation of ethylbenzene-contaminated soilsPublication . Soares, António Alves; Pinho, Maria Teresa; Albergaria, José Tomás; Domingues, Valentina F.; Alvim-Ferraz, Maria da Conceição M.; De Marco, Paolo; Delerue-Matos, CristinaSoil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technologies is presented as a valid option but is not yet entirely studied. This work presents the study of the remediation of ethylbenzene (EB)-contaminated soils, with different soil water and natural organic matter (NOMC) contents, using sequential SVE and BR. The obtained results allow the conclusion that: (1) SVE was sufficient to reach the cleanup goals in 63% of the experiments (all the soils with NOMC below 4%), (2) higher NOMCs led to longer SVE remediation times, (3) BR showed to be a possible and cost-effective option when EB concentrations were lower than 335 mg kgsoil −1, and (4) concentrations of EB above 438 mg kgsoil −1 showed to be inhibitory for microbial activity.
- Sorption of phenanthrene on agricultural soilsPublication . Soares, António Alves; Moldrup, Per; Minh, Luong Nhat; Vendelboe, Anders Lindblad; Schjonning, Per; Jonge, Lis W. dePolyaromatic hydrocarbon (PAH) sorption to soil is a key process deciding the transport and fate of PAH, and potential toxic impacts in the soil and groundwater ecosystems, for example in connection with atmospheric PAH deposition on soils. There are numerous studies on PAH sorption in relatively low organic porous media such as urban soils and groundwater sediments, but less attention has been given to cultivated soils. In this study, the phenanthrene partition coefficient, KD (liter per kilogram), was measured on 143 cultivated Danish soils (115 topsoils, 0–0.25-m soil depth and 28 subsoils, 0.25–1-m depth) by the single-point adsorption method. The organic carbon partition coefficient, KOC (liter per kilogram) for topsoils was found generally to fall between the KOC values estimated by the two most frequently used models for PAH partitioning, the Abdul et al. (Hazardous Waste & Hazardous Materials 4(3):211– 222, 1987) model and Karickhoff et al. (Water Research 13:241–248, 1979) model. A less-recognized model by Karickhoff (Chemosphere 10:833–846, 1981), yielding a KOC of 14,918 Lkg−1, closely corresponded to the average measured KOC value for the topsoils, and this model is therefore recommended for prediction of phenanthrene mobility in cultivated topsoils. For lower subsoils (0.25–1-m depth), the KOC values were closer to and mostly below the estimate by the Abdul et al. (Hazardous Waste & Hazardous Materials 4(3):211–222, 1987) model. This implies a different organic matter composition and higher PAH sorption strength in cultivated topsoils, likely due to management effects including more rapid carbon turnover. Finally, we applied the recent Dexter et al. (Geoderma 144:620–627, 2008) theorem, and calculated the complexed organic carbon and non-complexed organic carbon fractions (COC and NCOC, grams per gram). Multiple regression analyses showed that the NCOC-based phenanthrene partition coefficient (KNCOC) could be markedly higher than the COCbased partition coefficient (KCOC) for soils with a clay/OC ratio <10. This possibly higher PAH sorption affinity to the NCOC fraction needs further investigations to develop more realistic and accurate models for PAH mobility and effects in the environment, also with regard to colloid-facilitated PAH transport.
