Browsing by Author "Rodriguez, Jonathan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- CANDi: context-aware node discovery for short-range cooperationPublication . Alam, Muhammad; Albano, Michele; Radwan, Ayman; Rodriguez, JonathanMulti-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the benefits gained from multiple interfaces come at an expense—that being higher energy consumption in an era where mobile devices need to be energy compliant. One promising solution is the usage of short-range cooperative communication as an overlay for infrastructure-based networks taking advantage of its context information. However, the node discovery mechanism, which is pivotal to the bearer establishment process, still represents a major burden in terms of the total energy budget. In this paper, we propose a technology agnostic approach towards enhancing the MAC energy ratings by presenting a context-aware node discovery (CANDi) algorithm, which provides a priori knowledge towards the node discovery mechanism by allowing it to search nodes in the near vicinity at the ‘right time and at the right place’. We describe the different beacons required for establishing the cooperation, as well as the context information required, including battery level, modes, location and so on. CANDi uses the long-range network (WiMAX and WiFi) to distribute the context information about cooperative clusters (Ultra-wideband-based) in the vicinity. The searching nodes can use this context in locating the cooperative clusters/nodes, which facilitates the establishing of short-range connections. Analytical and simulation results are obtained, and the energy saving gains are further demonstrated in the laboratory using a customised testbed. CANDi saves up to 50% energy during the node discovery process, while the demonstrative testbed shows up to 75% savings in the total energy budget, thus validating the algorithm, as well as providing viable evidence to support the usage of short-range cooperative communications for energy savings.
- Outage Probability of V2V Multiple-Antenna Rice Fading Links with Explicit Ground ReflectionPublication . Gutiérrez Gaitán, Miguel; Samano-Robles, Ramiro; Rodriguez, JonathanThis paper investigates the improvement in terms of outage probability of a vehicle-to-vehicle (V2V) communication link with respect to the density of antennas used at each vehicle end. The objective is to find a trade-off between system complexity and communication performance considering that the deterministic component of the link is affected explicitly by multiple ground reflections (self-interference). The antennas are assumed to be located at regularly distributed positions across the surface of contiguous vehicles. Part of the work assumes symbol repetition at the transmitter side, and different signal combining mechanisms at the receiver side, namely, maximum-ratio and equal-gain combining (MRC and EGC, respectively). The objective is to minimize outage probability of the link with deterministic and stochastic channel components (Rice-distributed), where the line-of-sight (LOS) is affected by multi-ray ground reflections as an extension of the well-known two-ray model. This scenario is considered more realistic for V2V scenarios due to the potential proximity of ground to the antenna elements. The outage probability is calculated over a range of inter-vehicle distances with respect to the free-space loss solution. The results show that performance is improved even for a relatively small number of antennas and that a critical point is reached beyond which improvement is only differential. This suggests that an optimum trade-off can be obtained to ensure a value of outage probability with a complexity constraint over a range of inter-vehicle distances.
- Use of negative information in positioning and tracking algorithmsPublication . Albano, Michele; Hadzic, Senka; Rodriguez, JonathanTo avoid additional hardware deployment, indoor localization systems have to be designed in such a way that they rely on existing infrastructure only. Besides the processing of measurements between nodes, localization procedure can include the information of all available environment information. In order to enhance the performance of Wi-Fi based localization systems, the innovative solution presented in this paper considers also the negative information. An indoor tracking method inspired by Kalman filtering is also proposed.