Browsing by Author "Rodrigues, Artur"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Identification of Eschweilenol C in derivative of Terminalia fagifolia Mart. and green synthesis of bioactive and biocompatible silver nanoparticlesPublication . Araujo, Alyne Rodrigues de; Ramos-Jesus, Joilson; Oliveira, Taiane Maria de; Carvalho, Andressa Maria A. de; Nunes, Paulo Humberto M.; Daboit, Tatiane Caroline; Carvalho, Ana P.; Barroso, M. Fátima; Almeida, Miguel Peixoto de; Plácido, Alexandra; Rodrigues, Artur; Portugal, Camila C.; Socodato, Renato; Relvas, João B.; Delerue-Matos, Cristina; Silva, Durcilene Alves da; Eaton, Peter; Leite, José Roberto de Souza de A.A green synthetic route was developed to prepare silver nanoparticles (AgNPs) in aqueous solution for biological applications. Eschweilenol C, a compound derivative ellagic acid was identified as the main constituent of the aqueous fraction of the ethanolic extract of Terminalia fagifolia Mart. by NMR analysis. In the green synthesis, the ethanolic extract of T. fagifolia and its aqueous fraction were used to promote silver reduction and nanoparticle stabilization. The synthesized AgNPs presented a spherical or polygonal morphology shape by TEM analysis and AgNPs showed high levels of antioxidant and considerable antibacterial and antifungal activities. Synthesized nanoparticles presented significant antioxidant activity by sequestration of DPPH and ABTS radicals, in addition to iron reduction (FRAP assay) and measurement of antioxidant capacity in ORAC units, in addition, AgNP synthesized with the aqueous fraction also demonstrated antioxidant potential in microglial cells. Gram-positive and Gram-negative bacteria were susceptible to growth inhibition by the nanoparticles, among which the AgNPs formed by the ethanolic extract was the most effective. The data obtained by AFM images suggested that AgNPs could lead to the lysis of bacteria and subsequent death. The antifungal assays showed high efficiency against yeasts and dermatophytes. This work represents the first description of antifungal activity by AgNPs against Fonsecaea pedrosoi, the etiologic agent of chromoblastomycosis. In relation to biocompatibility, the AgNPs induced lower haemolysis than AgNO3.
- Microglia dysfunction caused by the loss of rhoa disrupts neuronal physiology and leads to neurodegenerationPublication . Socodato, Renato; Portugal, Camila C.; Canedo, Teresa; Rodrigues, Artur; Almeida, Tiago O.; Henriques, Joana F.; Vaz, Sandra H.; Magalhães, João; Silva, Cátia M.; Baptista, Filipa I.; Alves, Renata L.; Coelho-Santos, Vanessa; Silva, Ana Paula; Paes-de-Carvalho, Roberto; Magalhães, Ana; Brakebusch, Cord; Sebastião, Ana M.; Summavielle, Teresa; Ambrósio, António F.; Relvas, João B.Nervous tissue homeostasis requires the regulation of microglia activity. Using conditional gene targeting in mice, we demonstrate that genetic ablation of the small GTPase Rhoa in adult microglia is sufficient to trigger spontaneous microglia activation, producing a neurological phenotype (including synapse and neuron loss, impairment of long-term potentiation [LTP], formation of β-amyloid plaques, and memory deficits). Mechanistically, loss of Rhoa in microglia triggers Src activation and Src-mediated tumor necrosis factor (TNF) production, leading to excitotoxic glutamate secretion. Inhibiting Src in microglia Rhoa-deficient mice attenuates microglia dysregulation and the ensuing neurological phenotype. We also find that the Rhoa/Src signaling pathway is disrupted in microglia of the APP/PS1 mouse model of Alzheimer disease and that low doses of Aβ oligomers trigger microglia neurotoxic polarization through the disruption of Rhoa-to-Src signaling. Overall, our results indicate that disturbing Rho GTPase signaling in microglia can directly cause neurodegeneration.