Browsing by Author "Pinto, Vasco"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Frequency of TERT promoter mutations in human cancersPublication . Vinagre, João; Almeida, Ana; Pópulo, Helena; Batista, Rui; Lyra, Joana; Pinto, Vasco; Coelho, Ricardo; Celestino, Ricardo; Prazeres, Hugo; Lima, Luís; Melo, Miguel; Rocha, Adriana Gaspar; Preto, Ana; Castro, Patrícia; Castro, Ligia; Pardal, Fernando; Lopes, José Manuel; Santos, Lúcio; Reis, Rui Manuel; Cameselle-Teijeiro, José; Sobrinho-Simões, Manuel; Lima, Jorge; Máximo, Valdemar; Soares, PaulaReactivation of telomerase has been implicated in human tumorigenesis, but the underlying mechanisms remain poorly understood. Here we report the presence of recurrent somatic mutations in the TERT promoter in cancers of the central nervous system (43%), bladder (59%), thyroid (follicular cell-derived, 10%) and skin (melanoma, 29%). In thyroid cancers, the presence of TERT promoter mutations (when occurring together with BRAF mutations) is significantly associated with higher TERT mRNA expression, and in glioblastoma we find a trend for increased telomerase expression in cases harbouring TERT promoter mutations. Both in thyroid cancers and glioblastoma, TERT promoter mutations are significantly associated with older age of the patients. Our results show that TERT promoter mutations are relatively frequent in specific types of human cancers, where they lead to enhanced expression of telomerase.
- Telomerase promoter mutations in cancer: an emerging molecular biomarker?Publication . Vinagre, João; Pinto, Vasco; Celestino, Ricardo; Reis, Marta; Populo, H; Boaventura, Paula; Melo, Miguel; Catarino, T.; Lima, Jorge; Lopes, José Manuel; Maximo, Valdemar; Sobrinho-Simões, Manuel; Soares, PaulaCell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target.