Browsing by Author "Lobo, Cristina"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- DC Fuzzy Multicriteria Approach to Increase the Probability of Delivering Power in Distribution NetworksPublication . Canizes, Bruno; Soares, João; Vale, Zita; Lobo, CristinaThis paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.
- Electric vehicle scenario simulator tool for smart grid operatorsPublication . Soares, João; Canizes, Bruno; Lobo, Cristina; Vale, Zita; Morais, H.This paper presents a simulator for electric vehicles in the context of smart grids and distribution networks. It aims to support network operator´s planning and operations but can be used by other entities for related studies. The paper describes the parameters supported by the current version of the Electric Vehicle Scenario Simulator (EVeSSi) tool and its current algorithm. EVeSSi enables the definition of electric vehicles scenarios on distribution networks using a built-in movement engine. The scenarios created with EVeSSi can be used by external tools (e.g., power flow) for specific analysis, for instance grid impacts. Two scenarios are briefly presented for illustration of the simulator capabilities.
- Electric vehicles in urban areas: test cases using a scenario simulatorPublication . Soares, João; Lobo, Cristina; Morais, H.; Vale, ZitaElectric vehicles introduction will affect cities environment and urban mobility policies. Network system operators will have to consider the electric vehicles in planning and operation activities due to electric vehicles’ dependency on the electricity grid. The present paper presents test cases using an Electric Vehicle Scenario Simulator (EVeSSi) being developed by the authors. The test cases include two scenarios considering a 33 bus network with up to 2000 electric vehicles in the urban area. The scenarios consider a penetration of 10% of electric vehicles (200 of 2000), 30% (600) and 100% (2000). The first scenario will evaluate network impacts and the second scenario will evaluate CO2 emissions and fuel consumption.
- Increase of the Delivered Power Probability in Distribution Networks using Pareto DC ProgrammingPublication . Canizes, Bruno; Soares, João; Vale, Zita; Lobo, CristinaA methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
- Multi-criteria optimisation approach to increase the delivered power in radial distribution networksPublication . Canizes, Bruno; Vale, Zita; Soares, João; Lobo, CristinaThis study proposes a new methodology to increase the power delivered to any load point in a radial distribution network, through the identification of new investments in order to improve the repair time. This research work is innovative and consists in proposing a full optimisation model based on mixed-integer non-linear programming considering the Pareto front technique. The goal is to achieve a reduction in repair times of the distribution networks components, while minimising the costs of that reduction as well as non-supplied energy costs. The optimisation model considers the distribution network technical constraints, the substation transformer taps, and it is able to choose the capacitor banks size. A case study based on a 33-bus distribution network is presented in order to illustrate in detail the application of the proposed methodology.
- Optimal Approach for Reliability Assessment in Radial Distribution NetworksPublication . Canizes, Bruno; Soares, João; Vale, Zita; Lobo, CristinaThis paper proposes a new methodology for the evaluation of reliability in radial distribution networks through the identification of new investments in this kind of networks, in order to reduce the repair time and the failure rate, which leads to a reduction of the forced outage rate and, consequently, to an increase of reliability. The novelty of this research work consists in proposing an ac optimization model based on mixed-integer nonlinear programming that is developed considering the Pareto front technique, in order to achieve a reduction of repair times and of failure rates of the distribution network components, whileminimizing the costs of that reduction, the power losses cost, the cost of the optimal capacitor location and size, and the maximization of reliability, which is in the form of minimization of nonsupplied energy cost. In order to estimate the outage parameters, a fuzzy set approach is used. The optimization model considers the distribution network technical constraints. A case study using a 33-bus distribution network is presented to illustrate the application of the proposed methodology. Index Terms—Capacitor location,
- Realistic Traffic Scenarios Using a Census Methodology: Vila Real Case StudyPublication . Soares, João; Lobo, Cristina; Vale, Zita; Oliveira, P. B. MouraThis paper presents the first phase of the redevelopment of the Electric Vehicle Scenario Simulator (EVeSSi) tool. A new methodology to generate traffic demand scenarios for the Simulation of Urban MObility (SUMO) tool for urban traffic simulation is described. This methodology is based on a Portugal census database to generate a synthetic population for a given area under study. A realistic case study of a Portuguese city, Vila Real, is assessed. For this area the road network was created along with a synthetic population and public transport. The traffic results were obtained and an electric buses fleet was evaluated assuming that the actual fleet would be replaced in a near future. The energy requirements to charge the electric fleet overnight were estimated in order to evaluate the impacts that it would cause in the local electricity network.
