Browsing by Author "Lacerda, Eduardo da Rosa"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Study and analysis of the use of flexibility in local electricity marketsPublication . Lacerda, Eduardo da Rosa; Cruzvillasante, Fernando LezamaIn this work an introduction to Local Electricity Markets (LEM) was done and afterwards evolutionary algorithms (EAs) such as Differential Evolution (DE), HybridAdaptive Differential Evolution (HyDE), Hybrid-Adaptive Differential Evolution with Decay Function (HyDE-DF) and Vortex Search (VS) were applied to a market model in order to test its efficiency and scalability. Then, the market model was expanded adding a network model from the BISITE laboratory and again tests using the evolutionary algorithms were performed. In more detail, first a literature review is done about distributed generation, load flexibility, LEM and EAs. Then a cost optimization problem in Local Electricity Markets is analyzed considering fixed-term flexibility contracts between the distribution system operator (DSO) and aggregators. In this market structure, the DSO procures flexibility while aggregators of different types (e.g., conventional demand response or thermo-load aggregators) offer the service. Its then solved the proposed model using evolutionary algorithms based on the well-known differential evolution (DE). First, a parameter-tuning analysis is done to assess the impact of the DE parameters on the quality of solutions to the problem. Later, after finding the best set of parameters for the “tuned” DE strategies, we compare their performance with other self-adaptive parameter algorithms, namely the HyDE, HyDE-DF, and VS. Overall, the algorithms are able to find near-optimal solutions to the problem and can be considered an alternative solver for more complex instances of the model. After this a network model, from BISITE laboratory, is added to the problem and new analyses are performed using evolutionary algorithms along with MATPOWER power flow algorithms. Results show that evolutionary algorithms support from simple to complex problems, that is, it is a scalable algorithm, and with these results it is possible to perform analyses of the proposed market model.