Browsing by Author "Hamam, Habib"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- AI-based Pilgrim Detection using Convolutional Neural NetworksPublication . Jabra, Marwa Ben; Ammar, Adel; Koubaa, Anis; Cheikhrouhou, Omar; Hamam, HabibPilgrimage represents the most important Islamic religious gathering in the world where millions of pilgrims visit the holy places of Makkah and Madinah to perform their rituals. The safety and security of pilgrims is the highest priority for the authorities. In Makkah, 5000 cameras are spread around the holy mosques for monitoring pilgrims, but it is almost impossible to track all events by humans considering the huge number of images collected every second. To address this issue, we propose to use an artificial intelligence technique based on deep learning and convolutional neural networks to detect and identify Pilgrims and their features. For this purpose, we built a comprehensive dataset for the detection of pilgrims and their genders. Then, we develop two convolutional neural networks based on YOLOv3 and Faster-RCNN for the detection of Pilgrims. Experiment results show that Faster RCNN with Inception v2 feature extractor provides the best mean average precision over all classes (51%). A video demonstration that illustrates a real-time pilgrim detection using our proposed model is available at [1].
- Integration and Applications of Fog Computing and Cloud Computing Based on the Internet of Things for Provision of Healthcare Services at HomePublication . Ijaz, Muhammad; Li, Gang; Lin, Ling; Cheikhrouhou, Omar; Hamam, Habib; Noor, AlamDue to the COVID-19 pandemic, the world has faced a significant challenge in the increase of the rate of morbidity and mortality among people, particularly the elderly aged patients. The risk of acquiring infections may increase during the visit of patients to the hospitals. The utilisation of technology such as the “Internet of Things (IoT)” based on Fog Computing and Cloud Computing turned out to be efficient in enhancing the healthcare quality services for the patients. The present paper aims at gaining a better understanding and insights into the most effective and novel IoT-based applications such as Cloud Computing and Fog Computing and their implementations in the healthcare field. The research methodology employed the collection of the information from the databases such as PubMed, Google Scholar, MEDLINE, and Science Direct. There are five research articles selected after 2015 based on the inclusion and exclusion criteria set for the study. The findings of the studies included in this paper indicate that IoT-based Fog Computing and Cloud Computing increase the delivery of healthcare quality services to patients. The technology showed high efficiency in terms of convenience, reliability, safety, and cost-effectiveness. Future studies are required to incorporate the models that provided the best quality services using the Fog and Cloud Computation techniques for the different user requirements. Moreover, edge computing could be used to significantly enhance the provision of health services at home.
