Browsing by Author "Garrido, J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Isothiazolinone Biocides: Chemistry, Biological, and Toxicity ProfilesPublication . Silva, Vânia; Silva, Catia; Soares, Pedro; Garrido, E. Manuela; Borges, Fernanda; Garrido, J.The importance of isothiazole and of compounds containing the isothiazole nucleus has been growing over the last few years. Isothiazolinones are used in cosmetic and as chemical additives for occupational and industrial usage due to their bacteriostatic and fungiostatic activity. Despite their effectiveness as biocides, isothiazolinones are strong sensitizers, producing skin irritations and allergies and may pose ecotoxicological hazards. Therefore, their use is restricted by EU legislation. Considering the relevance and importance of isothiazolinone biocides, the present review describes the state-of-the-art knowledge regarding their synthesis, antibacterial components, toxicity (including structure-activity-toxicity relationships) outlines, and (photo)chemical stability. Due to the increasing prevalence and impact of isothiazolinones in consumer's health, analytical methods for the identification and determination of this type of biocides were also discussed.
- Protective effect of C. sativa leaf extract against UV mediated-DNA damage in a human keratinocyte cell linePublication . Almeida, Isabel F.; Pinto, A.S.; Monteiro, C.; Monteiro, H.; Belo, L.; Fernandes, J.; Bento, A.R.; Duarte, T.L.; Garrido, J.; Bahia, Maria Fernanda; Lobo, J.M. Sousa; Costa, P.C.Toxic effects of ultraviolet (UV) radiation on skin include protein and lipid oxidation, and DNA damage. The latter is known to play a major role in photocarcinogenesis and photoaging. Many plant extracts and natural compounds are emerging as photoprotective agents. Castanea sativa leaf extract is able to scavenge several reactive species that have been associated to UV-induced oxidative stress. The aim of this work was to analyze the protective effect of C. sativa extract (ECS) at different concentrations (0.001, 0.01, 0.05 and 0.1 μg/mL) against the UV mediated-DNA damage in a human keratinocyte cell line (HaCaT). For this purpose, the cytokinesis-block micronucleus assay was used. Elucidation of the protective mechanism was undertaken regarding UV absorption, influence on 1O2 mediated effects or NRF2 activation. ECS presented a concentration-dependent protective effect against UV-mediated DNA damage in HaCaT cells. The maximum protection afforded (66.4%) was achieved with the concentration of 0.1 μg/mL. This effect was found to be related to a direct antioxidant effect (involving 1O2) rather than activation of the endogenous antioxidant response coordinated by NRF2. Electrochemical studies showed that the good antioxidant capacity of the ECS can be ascribed to the presence of a pool of different phenolic antioxidants. No genotoxic or phototoxic effects were observed after incubation of HaCaT cells with ECS (up to 0.1 μg/mL). Taken together these results reinforce the putative application of this plant extract in the prevention/minimization of UV deleterious effects on skin.