Browsing by Author "Ferreira, Hugo Miguel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Environmental modeling with precision navigation using ROAZ autonomous surface vehiclePublication . Ferreira, Hugo Miguel; Almeida, Carlos; Martins, Alfredo; Almeida, José Miguel; Dias, André; Silva, Guilherme; Silva, EduardoThe use of robotic vehicles for environmental modeling is discussed. This paper presents diverse results in autonomous marine missions with the ROAZ autonomous surface vehicle. The vehicle can perform autonomous missions while gathering marine data with high inertial and positioning precision. The underwater world is an, economical and environmental, asset that need new tools to study and preserve it. ROAZ is used in marine environment missions since it can sense and monitor the surface and underwater scenarios. Is equipped with a diverse set of sensors, cameras and underwater sonars that generate 3D environmental models. It is used for study the marine life and possible underwater wrecks that can pollute or be a danger to marine navigation. The 3D model and integration of multibeam and sidescan sonars represent a challenge in nowadays. Adding that it is important that robots can explore an area and make decisions based on their surroundings and goals. Regard that, autonomous robotic systems can relieve human beings of repetitive and dangerous tasks.
- Field experiments for marine casualty detection with autonomous surface vehiclesPublication . Martins, Alfredo; Dias, André; Almeida, José Miguel; Ferreira, Hugo Miguel; Almeida, Carlos Valente; Silva, Guilherme Amaral; Machado, Diogo Cabral; Sousa, João Ricardo; Pereira, Pedro Oliveira; Matos, Aníbal; Lobo, Vitor; Silva, EduardoIn this paper we present a set of field tests for detection of human in the water with an unmanned surface vehicle using infrared and color cameras. These experiments aimed to contribute in the development of victim target tracking and obstacle avoidance for unmanned surface vehicles operating in marine search and rescue missions. This research is integrated in the work conducted in the European FP7 research project Icarus aiming to develop robotic tools for large scale rescue operations. The tests consisted in the use of the ROAZ unmanned surface vehicle equipped with a precision GPS system for localization and both visible spectrum and IR cameras to detect the target. In the experimental setup, the test human target was deployed in the water wearing a life vest and a diver suit (thus having lower temperature signature in the body except hands and head) and was equipped with a GPS logger. Multiple target approaches were performed in order to test the system with different sun incidence relative angles. The experimental setup, detection method and preliminary results from the field trials performed in the summer of 2013 in Sesimbra, Portugal and in La Spezia, Italy are also presented in this work.