Percorrer por autor "Ferreira, Diogo"
A mostrar 1 - 6 de 6
Resultados por página
Opções de ordenação
- Antimicrobial activity of food-isolated fungi extractsPublication . Ferreira, Diogo; Areal-Hermida, Lara; Baylina, Pilar; Fernandes, Rúben; Sieiro, CarmenOne major source for drug discovery are microbial metabolites. Fungi, renowned for their ability to produce an array of broad and diverse secondary metabolites, due to their extensive dispersion and diversity, offer a rich resource for drug discovery. Antibiotic resistance is a major concern. Rapid increase of resistant bacteria worldwide, dampens antibiotic efficiency, burdens healthcare services and increase morbidity and mortality. Antibiotic misuse and lack of new drug development are the main responsible for this health crisis. So, the creation of fungal libraries to find and study new compounds is essential to tackle the rising of antimicrobial resistance and continue with industrial efforts of drug discovery and production. Isolation from chestnuts, chestnut flour and sunflower seeds allowed us to obtain a collection of 165 fungal isolates. Bioactivity of fungal extracts were screened against different antibiotic resistant bacteria. Bacteria grown overnight, adjusted to 1.5 x 108 CFU/mL was exposed to fungal extracts, at a concentration of 100 μg/mL for 24 hours and inhibition rates were calculated. Several extracts showed activity against antimicrobial resistant bacteria and further studies should be made in order to find if new molecules could be responsible for our fungi antimicrobial activity.
- Creation of a fungal library and screening of antimicrobial and anticancer activityPublication . Ferreira, Diogo; Hermida, Lara Areal; Rocha, Ana Catarina; Baylina, Pilar; Sieiro, Carmen; Fernandes, Rúben; BAYLINA MACHADO, PILARAccording to the World Health Organization, cancer and infectious diseases are two of the most problematic diseases nowadays. Cancer kills 10 million people every year and the emergence of resistance to antitumoral drugs is an important medical challenge. At the same time, antimicrobial resistance (AMR) is also a serious threat to human and environmental health. Besides mortality, AMR burdens healthcare services and dampens medical procedures such as surgeries, cancer treatments and other invasive procedures. The development of new drug therapies to fight drug resistance is essential to contest the rising of resistant bacteria and reduction of the effectiveness of antitumoral drugs. Microorganisms have been a major source for natural compounds throughout the years. Fungi, renowned for their ability to produce an array of broad and diverse secondary metabolites, offer a rich resource for drug discovery. We built a collection of fungal species, isolated from chestnuts, sunflower seeds, and chestnut flour, and explored their extracts for potential antimicrobial and anticancer activity. Fungi cultures for secondary metabolite biosynthesis were done in submerged fermentation in Malt Extract broth for 15 days at 26 °C. Liquid-liquid extraction techniques, with ethyl acetate as a solvent, were applied to obtain crude secondary metabolite extracts. Clinical resistant bacteria, yeasts, and prostate cell lines (human prostate epithelial cells – HpepiC; human caucasian prostate adenocarcinoma cells - PC3) were exposed to fungal extracts at a single concentration of 100 µg/mL. Our results so far show several extracts with antimicrobial and/or anticancer activity without decreasing cell viability of non-tumoral cells, showing their potential as therapeutic drugs without possible secondary effects. Although, more studies should be done, and pending fungal identification will allow us to select which extracts will be further investigated to find if the displayed bioactivity could be happening due to unknown natural compounds
- Exploring the potential protective effect of probiotics in obesity-induced colorectal cancer: What insights can in vitro models provide?Publication . Viana, Rejane; Rocha, Ana C.; Sousa, André P.; Ferreira, Diogo; Fernandes, Rúben; Almeida, Cátia; Pais, Patrick J.; Baylina, Pilar; Pereira, Ana CláudiaColorectal cancer (CRC) is the third most common cancer diagnosed today and the third leading cause of death among cancer types. CRC is one of the gastrointestinal tumors with obesity as the main extrinsic risk factor, since, according to authors, the meta-inflammation sustained by the excess adipose tissue can provide abundant circulating lipids, as well as hormones and metabolites crucial to tumor development and aggressiveness. The gut microbiota can protect the colon from metainflammation and endocrine changes caused by obesity. The present study aimed to investigate the antitumor activity of a commercial probiotic in intestinal tumor cells under two adiposity conditions. Experimental assays were performed on the Caco2 cell line (colon adenocarcinoma) supplemented with differentiated adipocyte’s secretomes of the 3T3-L1 cell line (mouse pre-adipocytes) in two adiposity conditions: (i) differentiation without the use of Pioglitazone (noPGZ) and (ii) differentiation using Pioglitazone (PGZ). The Caco2 cells were first exposed to both secretomes for 24 h and evaluated and subsequently exposed to probiotic extract followed by secretome and evaluated. The effects of these treatments were evaluated using cytotoxicity assays by MTT, cell migration by injury, and antioxidant activity by glutathione assay. The use of secretomes showed a statistically significant increase in cell viability in Caco2 cells, either in noPGZ (p < 0.01) or PGZ (p < 0.05), and the probiotic was not able to reduce this effect. In the injury assay, secretome increased cell migration by more than 199% in both adiposity conditions (p < 0.001 in noPGZ and p < 0.01 in PGZ). In the probiotic treatment, there was a reduction in cell migration compared to the control in adiposity conditions. The antioxidant response of Caco2 cells was increased in both adiposity conditions previously exposed to the probiotic supernatant. This pilot work brings to light some findings that may answer why the modulation of the intestinal microbiota using probiotics is an alternative strategy leading to improvements in the condition and stage of the colon tumor. Additional studies are needed to clarify the role of Pioglitazone in this type of tumor and the metabolites of obesity that are attenuated by the use of probiotics.
- Harvesting the power of green synthesis: gold nanoparticles tailored for prostate cancer therapyPublication . Oliveira, Marco; Sousa, André; Sá, Sara; Soares, Sílvia; Pereira, Ana Cláudia; Rocha, Ana Catarina; Pais, Patrick; Ferreira, Diogo; Almeida, Cátia; Luís, Carla; Lima, Cláudio; Almeida, Fábio; Gestoso, Álvaro; Duarte, Miguel-Correa; Barata, Pedro; Martins-Mendes, Daniela; Baylina, Pilar; Pereira, Carla F.; Fernandes, RúbenBiosynthetic gold nanoparticles (bAuNPs) present a promising avenue for enhancing biocompatibility and offering an economically and environmentally responsible alternative to traditional production methods, achieved through a reduction in the use of hazardous chemicals. While the potential of bAuNPs as anticancer agents has been explored, there is a limited body of research focusing on the crucial physicochemical conditions influencing bAuNP production. In this study, we aim to identify the optimal growth phase of Pseudomonas aeruginosa cultures that maximizes the redox potential and coordinates the formation of bAuNPs with increased efficiency. The investigation employs 2,6-dichlorophenolindophenol (DCIP) as a redox indicator. Simultaneously, we explore the impact of temperature, pH, and incubation duration on the biosynthesis of bAuNPs, with a specific emphasis on their potential application as antitumor agents. Characterization of the resulting bAuNPs is conducted using ATR-FT-IR, TEM, and UV-Vis spectroscopy. To gain insights into the anticancer potential of bAuNPs, an experimental model is employed, utilizing both non-neoplastic (HPEpiC) and neoplastic (PC3) epithelial cell lines. Notably, P. aeruginosa cultures at 9 h/OD600 = 1, combined with biosynthesis at pH 9.0 for 24 h at 58 ◦C, produce bAuNPs that exhibit smaller, more spherical, and less aggregated characteristics. Crucially, these nanoparticles demonstrate negligible effects on HPEpiC cells while significantly impacting PC3 cells, resulting in reduced viability, migration, and lower IL-6 levels. This research lays the groundwork for the development of more specialized, economical, and ecologically friendly treatment modalities.
- Ketamine antidepressant properties: a systematic review of clinical trialsPublication . Ferreira, Diogo; Cruz, Agostinho; Santos, MarleneKetamine has been used to provide a rapid and persistent antidepressant effect in patients with treatment-resistant depression. This drug reverses depressive symptoms by blocking N-methyl-D-Aspartate receptors, which causes a downstream effect on glutamatergic system. The main goal of this work consisted in a systematic review of the antidepressant and adverse events of Ketamine in patients with treatment-resistant depression. Keywords were defined with PICO´s strategy and systematic review was performed by using the PUBMED database. After inclusion and exclusion criteria, a total of 21 articles were included. Results showed a rapid antidepressant action from the resynchronization of neural circuits upon Ketamine use. However, this drug was also associated with several induced side-effects, including changes in blood pressure, dissociative symptoms, headache, nausea and vomits. Different routes of administration and ketamine metabolites may be used to help to overcome some of the induced side-effects.
- Potential anticancer activity from food-isolated fungi extractsPublication . Ferreira, Diogo; Rocha, Ana Catarina; Baylina, Pilar; Sieiro, Carmen; Fernandes, RúbenFungal species have demonstrated great potential to produce a wide range of metabolites, including enzymes, antibiotics, and other bioactive compounds with therapeutic interest. Prostate cancer (PCa) is one of the most frequent cancers in men. This type of tumors have high levels of heterogeneity, leading to therapeutic failures and increasing resistance against chemotherapeutic drugs. Hence, is essential to research new therapeutic agents against PCa. Exploring the rich reservoir of fungal diversity, this study aims to uncover bioactive compounds that may serve as valuable candidates for developing novel therapeutics against prostate cancer. Isolation from chestnuts, chestnut flour and sunflower seeds led to the creation of a fungal collection of 165 isolates. Fungi isolates grew in flask cultures for 15 days, and culture broths were extracted with ethyl acetate. Human prostate epithelial cells (HPepiC) and the human prostate cancer cell line (PC3) were exposed to the fungal extracts at a concentration 100 μg/mL, and cell viability was evaluated by MTT assay. Results show that several fungal extracts significantly reduce the viability of tumor cells, with some showing little to no effect on healthy human cells, however, species identification is essential to carry on our studies.
