Percorrer por autor "Fernandes, Francisco João Ferreira Silva"
A mostrar 1 - 1 de 1
Resultados por página
Opções de ordenação
- Gestão automática de atribuição e monitorização de projetos/estágiosPublication . Fernandes, Francisco João Ferreira Silva; Carvalho, Piedade Barros LopezNo último ano académico, os estudantes do ISEP necessitam de realizar um projeto final para obtenção do grau académico que pretendem alcançar. O ISEP fornece uma plataforma digital onde é possível visualizar todos os projetos que os alunos se podem candidatar. Apesar das vantagens que a plataforma digital traz, esta também possui alguns problemas, nomeadamente a difícil escolha de projetos adequados ao estudante devido à excessiva oferta e falta de mecanismos de filtragem. Para além disso, existe também uma indecisão acrescida para selecionar um supervisor que seja compatível para o projeto selecionado. Tendo o aluno escolhido o projeto e o supervisor, dá-se início à fase de monitorização do mesmo, que possui também os seus problemas, como o uso de diversas ferramentas que posteriormente levam a possíveis problemas de comunicação e dificuldade em manter um histórico de versões do trabalho desenvolvido. De forma a responder aos problemas mencionados, realizou-se um estudo aprofundado dos tópicos de sistemas de recomendação aplicados a Machine Learning e Learning Management Systems. Para cada um desses grandes temas, foram analisados sistemas semelhantes capazes de solucionar o problema proposto, tais como sistemas de recomendação desenvolvidos em artigos científicos, aplicações comerciais e ferramentas como o ChatGPT. Através da análise do estado da arte, concluiu-se que a solução para os problemas propostos seria a criação de uma aplicação Web para alunos e supervisores, que juntasse as duas temáticas analisadas. O sistema de recomendação desenvolvido possui filtragem colaborativa com factorização de matrizes, e filtragem por conteúdo com semelhança de cossenos. As tecnologias utilizadas no sistema centram-se em Python no back-end (com o uso de TensorFlow e NumPy para funcionalidades de Machine Learning) e Svelte no front-end. O sistema foi inspirado numa arquitetura em microsserviços em que cada serviço é representado pelo seu próprio contentor de Docker, e disponibilizado ao público através de um domínio público. O sistema foi avaliado através de três métricas: performance, confiabilidade e usabilidade. Foi utilizada a ferramenta Quantitative Evaluation Framework para definir dimensões, fatores e requisitos(e respetivas pontuações). Os estudantes que testaram a solução avaliaram o sistema de recomendação com um valor de aproximadamente 7 numa escala de 1 a 10, e os valores de precision, recall, false positive rate e F-Measure foram avaliados em 0.51, 0.71, 0.23 e 0.59 respetivamente. Adicionalmente, ambos os grupos classificaram a aplicação como intuitiva e de fácil utilização, com resultados a rondar o 8 numa escala de 1 em 10.
