Browsing by Author "Coelho, Catarina C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Heparinized nanohydroxyapatite/collagen granules for controlled release of vancomycinPublication . Coelho, Catarina C.; Sousa, Susana R.; Monteiro, Fernando J.The purpose of this study was to develop a bone substitute material capable of preventing or treating osteomyelitis through a sustainable release of vancomycin and simultaneously inducing bone regeneration. Porous heparinized nanohydroxyapatite (nanoHA)/collagen granules were characterized using scanning electron microscopy, micro-computed tomography and attenuated total reflectance Fourier transform infrared spectroscopy. After vancomycin adsorption onto the granules, its releasing profile was studied by UV molecular absorption spectroscopy. The heparinized granules presented a more sustainable release over time, in comparison with nonheparinized nanoHA and nanoHA/collagen granules. Vancomycin was released for 360 h and proved to be bioactive until 216 h. Staphylococcus aureus adhesion was higher on granules containing collagen, guiding the bacteria to the material with antibiotic, improving their eradication. Moreover, cytotoxicity of the released vancomycin was assessed using osteoblast cultures, and after 14 days of culture in the presence of vancomycin, cells were able to remain viable, increasing their metabolic activity and colonizing the granules, as observed by scanning electron microscopy and confocal laser scanning microscopy. These findings suggest that heparinized nanoHA/collagen granules are a promising material to improve the treatment of osteomyelitis, as they are capable of releasing vancomycin, eliminating the bacteria, and presented morphological and chemical characteristics to induce bone regeneration.
- The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitutePublication . Coelho, Catarina C.; Padrão, Tatiana; Costa, Laura; Pinto, Marta T .; Costa, Paulo C.; Domingues, Valentina F.; Quadros, Paulo A.; Monteiro, Fernando J.; Sousa, Susana R.Bone graft infections are serious complications in orthopaedics and the growing resistance to antibiotics is increasing the need for antibacterial strategies. The use of magnesium oxide (MgO) is an interesting alternative since it possesses broad-spectrum antibacterial activity. Additionally, magnesium ions also play a role in bone regeneration, which makes MgO more appealing than other metal oxides. Therefore, a bone substitute composed of hydroxyapatite and MgO (HAp/MgO) spherical granules was developed using different sintering heat-treatment cycles to optimize its features. Depending on the sintering temperature, HAp/MgO spherical granules exhibited distinct surface topographies, mechanical strength and degradation profiles, that influenced the in vitro antibacterial activity and cytocompatibility. A proper balance between antibacterial activity and cytocompatibility was achieved with HAp/MgO spherical granules sintered at 1100 ºC. The presence of MgO in these granules was able to significantly reduce bacterial proliferation and simultaneously provide a suitable environment for osteoblasts growth. The angiogenic and inflammation potentials were also assessed using the in vivo chicken embryo chorioallantoic membrane (CAM) model and the spherical granules containing MgO stimulated angiogenesis without increasing inflammation. The outcomes of this study evidence a dual effect of MgO for bone regenerative applications making this material a promising antibacterial bone substitute.