Browsing by Author "Cid, Luis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Assessing the management of excessive daytime sleepiness by napping benefitsPublication . Murillo-Rodríguez, Eric; Yamamoto, Tetsuya; Monteiro, Diogo; Budde, Henning; Rocha, Nuno; Cid, Luis; Teixeira, Diogo S.; Telles-Correia, Diogo; Veras, André Barciela; Machado, Sérgio; Imperatori, Claudio; Torterolo, PabloPurpose Demanding lifestyle characterized by extended working hours, shift work schedules as well as excessive use of mobile gadgets leads to the disruption of the circadian and homeostatic factors affecting the sleep quality of individuals. As consequence, subjects complain of suffering several sleep disorders some of them characterized by inducing excessive daytime sleepiness (EDS). Currently, the therapeutic approaches for managing EDS include medication, promotion of sleep hygiene, cognitive and behavioral therapy or using of continuous positive airway pressure machine. In this review, we propose the posology of the personalized sleep medicine by the prescription of naps for treating EDS. Methods This review included the online search in PubMed and manual review of articles (basic and clinical trials) of a range of personalized medicine potentially associated to factors of dosage in areas such as nutrition, sports and sleep. Articles in English were identified and subsequently analyzed for consideration for this review. Results Current evidence has demonstrated that naps exert positive outcomes for individuals complaining with EDS. The dosage of naps might follow similar procedures as reported for personalized interventions in diets or exercise programs (by taking the right dose, at the proper time, with a recommended frequency) which have demonstrated successfully results. Conclusions The management of EDS may include the personalized sleep medicine considering the prescription of dosage of naps.
- Sleep and neurochemical modulation by DZNep and GSK-J1: potential link with histone methylation statusPublication . Murillo-Rodríguez, Eric; Arankowsky-Sandoval, Gloria; Barros, Jorge Aparecido; Rocha, Nuno; Yamamoto, Tetsuya; Machado, Sérgio; Budde, Henning; Telles-Correia, Diogo; Monteiro, Diogo; Cid, Luis; Veras, André BarcielaHistone methylation/demethylation plays an important modulatory role in chromatin restructuring, RNA transcription and is essential for controlling a plethora of biological processes. Due to many human diseases have been related to histone methylation/demethylation, several compounds such as 3-deazaneplanocin A (DZNep) or 3-((6-(4,5-Dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoic acid; N-[2-(2-pyridinyl)-6-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-4-pyrimidinyl]-β-Alanine (GSK-J1), have been designed to inhibit histone methylase or suppress histone demethylase, respectively. In the present study, we investigated the effects on the sleep-wake cycle and sleep-related neurochemical levels after systemic injections of DZNep or GSK-J1 given during the light or dark phase in rats. DZNep dose-dependently (0.1, 1.0, or 10 mg/kg, i.p.) prolonged wakefulness (W) duration while decreased slow wave sleep (SWS) and rapid eye movement sleep (REMS) time spent during the lights-on period with no changes observed in dark phase. In opposite direction, GSK-J1 (0.1, 1.0, or 10 mg/kg, i.p.) injected at the beginning of the lights-on period induced no statistical changes in W, SWS, or REMS whereas if administered at darkness, we found a diminution in W and an enhancement in SWS and REMS. Finally, brain microdialysis experiments in freely moving animals were used to evaluate the effects of DZNep or GSK-J1 treatments on contents of sleep-related neurochemicals. The results showed that DZNep boosted extracellular levels of dopamine, norepinephrine, epinephrine, serotonin, adenosine, and acetylcholine if injected at the beginning of the lights-on period whereas GSK-J1 exerted similar outcomes but when administered at darkness. In summary, DZNep and GSK-J1 may control the sleep-wake cycle and sleep-related neurochemicals through histone methylation/demethylation activity.
- The endocannabinoid system may modulate sleep disorders in agingPublication . Murillo-Rodríguez, Eric; Budde, Henning; Veras, André Barciela; Rocha, Nuno; Telles-Correia, Diogo; Monteiro, Diogo; Cid, Luis; Yamamoto, Tetsuya; Machado, Sérgio; Torterolo, PabloAging is an inevitable process that involves changes across life in multiple neurochemical, neuroanatomical, hormonal systems, and many others. In addition, these biological modifications lead to an increase in age-related sickness such as cardiovascular diseases, osteoporosis, neurodegenerative disorders, and sleep disturbances, among others that affect activities of daily life. Demographic projections have demonstrated that aging will increase its worldwide rate in the coming years. The research on chronic diseases of the elderly is important to gain insights into this growing global burden. Novel therapeutic approaches aimed for treatment of age-related pathologies have included the endocannabinoid system as an effective tool since this biological system shows beneficial effects in preclinical models. However, and despite these advances, little has been addressed in the arena of the endocannabinoid system as an option for treating sleep disorders in aging since experimental evidence suggests that some elements of the endocannabinoid system modulate the sleep-wake cycle. This article addresses this less-studied field, focusing on the likely perspective of the implication of the endocannabinoid system in the regulation of sleep problems reported in the aged. We conclude that beneficial effects regarding the putative efficacy of the endocannabinoid system as therapeutic tools in aging is either inconclusive or still missing.