Browsing by Author "Almeida, Ana F."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Co-Gasification of Crude Glycerol/Animal Fat MixturesPublication . Almeida, Ana F.; Pilão, Rosa Maria; Ribeiro, Albina; Ramalho, Elisa; Pinho, CarlosThe aim of this work was to assess the technical viability of glycerol/fat co-gasification. The gasification performance was studied in a downflow fixed bed reactor using activated alumina particles as bed material and steam as oxidizing agent. The effect of gasification temperature, from 800 to 950 °C was studied with a feed mixture with 10% (w/w) of animal fat. The influence of fat incorporation on the feedstock in the overall gasification process was also performed, using 3% (w/w) and 5% (w/w) of fat in feed mixtures. Samples of dry gas from the gasifier were collected and analyzed by gas chromatography in order to determine the CO, CO2, CH4, and H2 content. The best results were obtained using the highest tested temperature, 950 °C, and using 3% (w/w) of animal fat in the feed mixture. The overall results revealed that the co-gasification of glycerol/animal fat mixtures seems to be a feasible technical option
- Gasification of Cork Wastes in a Fluidized Bed ReactorPublication . Rodrigues, Sara; Almeida, Ana F.; Ribeiro, A.M.; Neto, Paula; Ramalho, Elisa; Pilão, Rosa MariaBiomass gasification has been identified as an option for energetic valorisation of organic wastes. This work aimed to study the gasification of cork industry wastes using a semi-batch fluidized bed reactor. The experimental tests were performed using air as oxidizing agent and sand particles as bed material. The heating was performed with an electrical resistance of 3 kW. The effect of biomass load (2–5.6 g), and bed temperature (780–900 °C) on gasification performance was evaluated using an air flow rate of 0.092 g/s. Samples of producer gas were analysed by a gas chromatograph fitted with a thermal conductivity detector. The detected and quantified compounds on producer gas were H2, CO, CH4 and CO2. Temperature and mass load had a predominant role in gasification performance and all gasification parameters increased with the temperature rise. The increase of mass resulted in a decrease of carbon conversion efficiency, cold gas efficiency and dry gas yield. Best results were obtained with mass load at a range of of 2–4 g, working at 850 °C. The results showed that cork particles are a sustainable raw material for gasification processes.
- Targeting lysosomes in colorectal cancer: exploring the anticancer activity of a New Benzo[a]phenoxazine derivativePublication . Ferreira, João C. C.; Granja, Sara; Almeida, Ana F.; Baltazar, Fátima; Gonçalves, M. Sameiro T.; Preto, Ana; Sousa, Maria JoãoColorectal cancer (CRC) has been ranked as one of the cancer types with a higher incidence and one of the most mortal. There are limited therapies available for CRC, which urges the finding of intracellular targets and the discovery of new drugs for innovative therapeutic approaches. In addition to the limited number of effective anticancer agents approved for use in humans, CRC resistance and secondary effects stemming from classical chemotherapy remain a major clinical problem, reinforcing the need for the development of novel drugs. In the recent years, the phenoxazines derivatives, Nile Blue analogues, have been shown to possess anticancer activity, which has created interest in exploring the potential of these compounds as anticancer drugs. In this context, we have synthetized and evaluated the anticancer activity of different benzo[a]phenoxazine derivatives for CRC therapy. Our results revealed that one particular compound, BaP1, displayed promising anticancer activity against CRC cells. We found that BaP1 is selective for CRC cells and reduces cell proliferation, cell survival, and cell migration. We observed that the compound is associated with reactive oxygen species (ROS) generation, accumulates in the lysosomes, and leads to lysosomal membrane permeabilization, cytosolic acidification, and apoptotic cell death. In vivo results using a chicken embryo choriollantoic membrane (CAM) assay showed that BaP1 inhibits tumor growth, angiogenesis, and tumor proliferation. These observations highlight that BaP1 as a very interest ing agent to disturb and counteract the important roles of lysosomes in cancer and suggests BaP1 as a promising candidate to be exploited as new anticancer lysosomal-targeted agent, which uses lysosome membrane permeabilization (LMP) as a therapeutic approach in CRC.