ISEP – DMA – Comunicações em eventos científicos
Permanent URI for this collection
Browse
Browsing ISEP – DMA – Comunicações em eventos científicos by Author "Alvim, M.R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Eco-efficiency approaches towards a sustainable composite materials manufacturing industryPublication . Fiúza, António; Ribeiro, M. C. S.; Meira Castro, Ana C.; Silva, F.; Meixedo, JP; Alvim, M.R.; Oliveira, L.In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
- Experimental study on polyester based concretes filled with glass fibre reinforced plastic recyclates – a contribution to composite materials sustainabilityPublication . Ribeiro, M. C. S.; Fiúza, António; Dinis, M.L.; Meira Castro, Ana C.; Silva, F.J.G.; Meixedo, JP; Alvim, M.R.The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.
- Sustainability Improvement of a composite materials’ industry through recycling and re-engineering process approachesPublication . Ribeiro, M.C; Fiúza, A.; Meira Castro, Ana C.; Silva, F.J.G.; Meixedo, JP; Dinis, M.L.; Alvim, M.R.This case study was aimed at measuring and assessing the potential improvements that could be made on the eco-efficiency performance of a composite materials’ industry, specifically a glass fibre reinforced plastic (GFRP) pultrusion manufacturing company. For this purpose, all the issues involved in the pultrusion process of GFRP profiles were analysed, the current ecoefficiency performance of the company was determined, all the procedures applied in the production process were revised, and improvement strategies were planned and investigated with basis on the performed analysis. The new eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures through re-engineering the manufacturing process and recycling approaches. These features lead to significant improvements on the sequent assessed eco-efficiency ratios, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
