Repository logo
 
Publication

Smart dashboard for Hoffmann reflex analysis

dc.contributor.authorCunha, Bruno
dc.contributor.authorFerreira, Ricardo
dc.contributor.authorCarneiro, Ana Sofia
dc.contributor.authorSousa, Andreia
dc.date.accessioned2024-10-29T15:36:15Z
dc.date.available2024-10-29T15:36:15Z
dc.date.issued2023-06
dc.description.abstractThe Hoffmann reflex is a is a neurophysiological test that provides insight into the functioning of the human nervous system. It is commonly used in clinical and research settings to evaluate the modulation of the monosynaptic spinal reflex. This paper focus the analysis of the Hoffmann reflex in the trapezius muscle, a muscle of particular interest for researchers and clinicians due to its importance in upper limb function and dynamic stability. However, the Hoffmann reflex analysis of this muscle bring some challenges as the need of applicating burst of electrical square impulses in each current intensity. A web-based smart dashboard, implemented in Python, which allows the user to visualize and analyze the Hoffmann reflex using various signals acquired through a constant current stimulator. The dashboard provides an intuitive and user-friendly interface that facilitates the selection of muscle signals of interest, analysis cycles, and start and end points for the signals. The visualizations offered by the dashboard, including overlapped and mean signal graphics, provide valuable insights into the Hoffmann reflex and its properties. Preliminary experiments with field experts and physiotherapists have yielded positive feedback on the usefulness of this tool, as they seek to gain a deeper understanding of the Hoffmann reflex, and we plan to further improve its capabilities in the future by employing machine learning techniques to automate the reflex detection.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCunha, B., Ferreira, R., Melo, A. S. C., & Sousa, A. S. P. (2023). Smart dashboard for Hoffmann reflex analysis. 2023 18th Iberian Conference on Information Systems and Technologies (CISTI), 1–5. https://doi.org/10.23919/CISTI58278.2023.10211889pt_PT
dc.identifier.doi10.23919/CISTI58278.2023.10211889pt_PT
dc.identifier.isbn978-989-33-4792-8
dc.identifier.urihttp://hdl.handle.net/10400.22/26283
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.relationThis work was funded by the “NORTE-01-0145-FEDER-000045” project, supported by Northern Portugal Regional operational Programme (Norte2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) and supported by the Fundação para a Ciência e Tecnologia (FCT) through R&D Unit funding (UIDB/05210/2020).pt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10211889pt_PT
dc.subjectData visualizationpt_PT
dc.subjectHoffmann reflexpt_PT
dc.subjectData processingpt_PT
dc.subjectSignal analysispt_PT
dc.subjectHumanpt_PT
dc.subjectComputerpt_PT
dc.subjectInteractionpt_PT
dc.titleSmart dashboard for Hoffmann reflex analysispt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceAveiro, Portugalpt_PT
oaire.citation.title18th Iberian Conference on Information Systems and Technologies (CISTI)pt_PT
person.familyNameAlmeida Cunha
person.familyNameCarneiro
person.familyNamePinheiro de Sousa
person.givenNameBruno Miguel
person.givenNameAna Sofia
person.givenNameAndreia Sofia
person.identifiernORyaXwAAAAJ
person.identifier1070119
person.identifier.ciencia-id581D-067C-6E6C
person.identifier.ciencia-id2216-9200-7EF6
person.identifier.orcid0000-0002-8661-3080
person.identifier.orcid0000-0003-4483-224X
person.identifier.orcid0000-0001-9528-1463
person.identifier.ridC-7138-2019
person.identifier.scopus-author-id56404142800
person.identifier.scopus-author-id55950021600
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication9b204d75-9d7f-4144-85dc-0c3741cce1df
relation.isAuthorOfPublication4ea513e1-efe7-4297-88ab-3279ad36f9f4
relation.isAuthorOfPublicationaeecfe02-e80d-49ab-9033-a1ade15658f2
relation.isAuthorOfPublication.latestForDiscoveryaeecfe02-e80d-49ab-9033-a1ade15658f2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_Bruno Cunha.pdf
Size:
334.25 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: