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Resumo 

Nos objetivos da união europeia para 2050 está consagrado que a união deve de ser neutra em 

carbono, para tal a utilização de energias renováveis será praticamente obrigatória. A eficiência 

de produção e utilização de energia elétrica é um tema pertinente. Para esse objetivo métodos 

de análise e controlo de produção e utilização de energia estão atualmente a ser alvo de 

projetos de investigação, neste ramo a inteligência artificial mostra boas promessas para a 

resolução deste problema.  

A solução apresentada é um sistema que conjuga Model Predictive Control com Reinforcement 

Learning, onde o Model Predictive Control faz o controlo de batterias, aquecimento de agua e 

arrafecimento do espaço para a otimização de um edifício e o Reinforcement Learning é 

utilizado para a melhoria do modelo tendo em conta os erros de previsão anteriores para 

melhorar as previsões futuras. A solução passa pela criação de um sistema modular onde as 

necessidades de cada edifício que fazem parte do sistema são avaliadas e geridas. A solução 

também ajuda a introduzir a produção própria de energia, a utilização de baterias estáticas 

presentes no edifício e por fim gerir as cargas elétricas que possam ser geridas como por 

exemplo uma bomba de calor, continuando a fornecer energia a cargas que não possam ser 

calendarizadas como por exemplo uma lâmpada. 

Os diversos casos de uso que foram testados permitiram fazer a avaliação do melhor algoritmo, 

os casos de estudo relativos a comunidado o sistema demonstrou melhores resultados que os  

sistemas fornecidos pela plataforma CityLearn. Apesar de não ter uma performance melhor que 

todos os sistemas com que competiu o sistema apresentado não necessita de passar pelo 

dataset de 4 anos antes de começar a fazer as optimizações, o algoritmo correu em apenas 1 

episodio onde aprendeu, treinou e tentou optimizar os inputs. 

Palavras-chave: Comunidades de energia, Aprendizagem por reforço, Modelo Controlo 

Preditivo, Gestão energética  
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Abstract 

The European Union's objectives for 2050 state that the Union must be carbon neutral, for 

which the use of renewable energy will be mandatory. The efficiency of production and use of 

electrical energy is a pertinent topic. To this end, methods of analysis and control of energy 

production and use are currently the target of research projects, in this field artificial 

intelligence shows good promise for solving this problem.  

The solution presented is a system that combines Model Predictive Control with Reinforcement 

Learning, where Model Predictive Control dose the control of batteries, domestic hot water and 

cooling for the optimization of a building and Reinforcement Learning is used to improve the 

model by using the error of the previous predictions to better itself. The solution involves 

creating a modular system where the needs of each building that are part of the system are 

evaluated and managed. The solution also aims to help introduce its own energy production, 

the use of static batteries present in the building and finally manage electrical loads that can be 

managed, such as a heat pump, while continuing to supply energy to loads that cannot be 

scheduled, such as a light bulb. 

There were multiple use cases that allowed the evaluation of the best algorithm, in the case 

studies relative to the energy community the system demonstrated better results than the 

systems present of the citylearn platform. Although it did not show the best performance of all 

systems, the system it lost to dose have a disadvantage that being it needs to first learn the 

entire dataset and only after dose it start to optimize, while the algorithm that is presented 

here only uses 1 episode where it learns, trains itself and tries to optimize the inputs. 

Keywords: Energy communities, Reinforcement Learning, Model Predictive Control, Energy 

management 
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1 Introduction 

1.1 Contextualization 

In the objectives of the European union for 2050 there is the goal of being carbon neutral, for 

that effect the usage of renewable energies to its maximum will be a necessity, the efficiency 

of production and utilization of electricity can facilitate this process [1].  Electricity is an integral 

part of our daily lives -we can’t live without it - we use it to supply water, make traffic lights 

work, heat our houses, and cook our food. 

Due to the need to improve reliability and resilience of the power grid, new ways to manage it 

are being implemented, empowered by the concept of smart grids [2]. Smart grids allow for 

better and more efficient integration of renewable energy by allowing decentralized energy 

production, among other characteristics. This t paradigm strongly benefits from the capability 

of being managed by a control system which can be centralized or decentralized [3]. 

This work has the main goal of testing the viability of using the Model Predictive Control (MPC) 

together with reinforcement learning for the control of assets on a smart grid/energy 

community whose foundation builds upon the work carried out in [4], where a multi-Agent 

reinforcement learning approach has been applied to the control of flexible assets in an energy 

community. 

This work is integrated in the SoftCPS research group (Software Technologies for Cyber-Physical 

Systems) at the School of Engineering of the Polytechnic of Porto (ISEP), that concentrates on 

developing and implementing innovative solutions in Middleware for CPS, IoT and Edge 

Computing. It is also integrated in  the OPEVA project  (OPtimization of Electric Vehicle 

Autonomy) whose main objective is to explore the benefits that can be obtained from the 

interaction between the multiple actors involved electric vehicles, from its production and 

design to its operation in order to optimize the autonomy of electric vehicles in a modern, also 

considering sustainability and resource optimization [5]. 
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1.1.1 Smart Energy Grid 

Currently the energy grid consists mainly of a large set of centralized production facilities whose 

energy production gets transferred onto the consumer through high, medium, and low voltage 

power lines, this induces a significant number of losses, particularly on the transformers and on 

the transmission lines, which range between 4-6% [6].Smart grids are electricity networks that 

use technology to monitor and meet energy demands of the energy consumers and improve 

management of energy generation [2]. These grids are based on two-way communication, 

where information from the end user goes to the utility company, which uses that information 

to better optimize and adapt to changing electric demand. 

A smart grid needs to improve reliability and resilience of the electricity grid, a disturbance on 

the energy grid can have a devastating effect, systems like traffic lights and communications 

can be disturbed when it is needed the most, on some harsher winters a failure of the energy 

grid can lead to people not being able to warm their houses, when a calamity happens the grid 

should be able to reroute the energy to either pass around the affected part or create a new 

route into the affected part. This, in part, will minimize or reduce the effects and time of 

recovery for outages. The energy can also be routed onto critical systems when the grid is 

coming back from a blackout thus improving efficiency and minimizing downtime of critical 

systems. Smart grids must manage distributed energy generation, to get all the possible 

benefits that they might bring. By decentralizing the grid this system will improve consumer 

control, by allowing to get information and manage interactions with the grids [3]. That might 

be day-to-day routine optimization or buying more efficient devices, although information 

needs to be private, secure, and untraceable basic data like how much energy a fridge consumes 

from a brand compared to another fridge from a different brand performs. 

With the rising interest in smart grids, the rising interest in the concept of energy communities 

is also increasing leading to the change on energy idea. 

An energy community is small agglomerate of energy producers, prosumers, and consumers 

usually on close physical proximity to each other where the energy is shared between all the 

users, this communities usually do try to use their own means of production like solar power 

for as much of the needs as possible, not relying as much on the national gird. 

 

1.1.2 Previous work 

As previously stated, the research starts in “A Multi-Agent Reinforcement Learning Approach 

to Integrate Flexible Assets into Energy Communities” where it was researched if a 

Reinforcement Learning approach could be used as an energy management tool, the research 

was based on energy communities and electric vehicles integration onto the grid, the system 

worked with a rules based controller in the beginning and later a full neural network with 

reinforcement learning.  
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It was found that this approach could reduce incoming electricity from the grid, electricity cost, 

emission reduction and daily peak load in par or better than other solutions. This solution would 

use photovoltaic panels, stationary batteries, electric vehicles and common building needs, 

where the electric vehicles could and would be used as another battery while still taking normal 

day to day car usage, the solution described in this document aims to do the same. 

Although this system does improve on the current state of the grid dose it with some problems 

firstly it cannot achieve an optimal control of the grid, and due to the way, it is designed where 

large parts of the system are centralized and deal with sensitive data it does have increased 

security concerns and needs to be much more secured than a decentralized system. 

The Fig.1 present in Tiago Fonseca’s work shows very well how the system works: 

 

Fig 1- EnergAIze role within an Energy Community [4] 

In Fig. 1 we can see that the algorithm takes the current state of the environment like electric 

vehicles data, environmental data, grid data the time, traffic data and the carbon intensity and 

energy pricing data of the electricity production. It then uses that information to control flexible 

loads on the system like electric vehicle chargers, heat pumps, other energy storage mediums 

and other flexible electric systems, the proposed solution is one where we relace the center of 

that image the Reinforcement Learning module with a Model Predictive Control with 

Reinforcement Learning module. 

1.1.3 Why Model Predictive Control? 

 A MPC works by using a model to predict the future behavior of a system with the selected 

actions over a finite time window, based on this predictions of the future state of the system 

an optimal control inputs can be inferred using a defined objective or a set of constraints [7]. 



 

20 
 

The System can do two sets of actions A or B. On this precise instant Action B is better than 

Action A but if we act A now our future is better than action B future, the System reaching the 

conclusion that action A is better on the long run the model will choose action A now. 

As an example, we will use the following fictional scenario to convey the idea of how a MPC 

works, in this fictional scenario there is a shop that can only stock one product P1 and P2, we 

know that on the next day P1 gives a profit of 10€ and P2 gives a profit of 5€ but when this 

action is taken in consideration of multiple days the model predicts that P1 will give a profit of 

50€ and P2 gives a profit of 60€, with this new information the store can choose to stock P2 and 

not P1 since for the same time it has more profit. 

This system needs a prediction algorithm to “see into the future” so it can find the best possible 

usage of electricity for the users need. 

1.1.4 The Problem Statement 

With the rising numbers of electric vehicles, the energy grid needs to be reinforced and 

reworked onto a system that can support such demands, there is also a rise of the Ambiental 

conscious individual, where global warming and air pollution are worries, that has created a 

demand for clean energies. According to the European Environment agency currently 22,5% of 

the energy consumed in the European zone is renewable energy, the same agency notes that 

energy flexibility is a must have for the achievement of 42.5% of renewable energy share by 

2030 [8]. 

A way to manage the energy grid will be necessary, managing self-production, electric vehicles, 

battery management, the customer needs, the community needs and the energy routing, all of 

this is needed for a future where we can rely solely on renewable energy, this is the problem 

that we will try to address, how to manage efficiently a power grid in the near future and all of 

the problems that brings, integrating the concept of smart grids by allowing small communities 

or individual buildings to go “smart” while maintaining functionality is paramount for the 

success of this system and as of writing there is no large-scale solution to this problem.        

1.2 Proposed solution 

This thesis will address the need to have energy management on buildings, it will combine 

energy generation, energy storage and energy usage. For that we will use a Model Predictive 

Control with Reinforcement Learning approach. The model predictive control will optimize the 

usage of the energy created, optimize the usage of batteries and electrical vehicles, while 

maintaining the requirements of the building, the user input on best achievable end goal is also 

considered where it being reducing carbon creation, saving on monthly electricity bill or being 

the most self-reliant as possible.  
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The reinforcement learning will adjust the parameters to create the best possible outcome to 

the needs of the building or the Energy Community and its owner. This system will aim to 

decentralize the energy grid while improving resilience and reducing carbon footprint by 

allowing people to manage energy sources and profit out of it. 

With this thesis the user will be allowed to use their energy sources, energy storage like 

batteries to either profit or reduce their own carbon emissions. Using edge computing and a 

custom message protocol allows for efficient communication and information security, while 

allowing the system to work independently and at the user’s location. 

 

Fig 2 - System flow diagram 

1.3 Thesis Objectives and Research Questions 

To ensure the research aligns with the scope of this work, this section formally outlines a set of 

project objectives and Research Questions (RQ). 

1.3.1 Objectives 

Following the proposed solution in Section 1.2, the Main Objective (MO) of this thesis is defined 

as: 

MO – Design, implement and evaluate a new energy flexibility scheduling framework based on 

MPC and RL for the integration of flexible assets into energy communities, considering user 

engagement, mixed personal and community objectives, scalability, and real-world applicability. 
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In a way to facilitate the achievement of the main objective, multiple Sub Objectives (SO) for 

this work were defined. They are described as follows:  

SO1 -  Investigate the current state-of-the-art on Renewable Energy Sources, Energy 

communities and predictive control systems. 

SO2 -  Investigate the current state-of-the-art of energy flexibility management methods of 

Model Predictive Control and evaluate their applicability. 

SO3 -  Design a decentralized multi-agent Model Predictive Control approach that manages 

and optimizes flexible energy assets considering individual objectives. 

SO4 -  Evaluate, tune, and optimize a solution, use different optimization objectives and EC 

scenarios, evaluating its performance, scalability, and adaptability to real-world 

scenarios. 

SO5 -  Benchmark the proposed solution against other systems. 

SO6 -  Evaluate the tests with regards to environmental, financial and prosumer engagement. 

1.3.2 Research Questions 

To guide the research performed in the scope of this thesis and successfully accomplish the 

established objectives, the main research question to be investigated was carefully formulated 

as: “How can AI help to beneficially manage energy flexible assets, such as EV, inserted in Energy 

Communities?” The main question was divided into three narrower sub-questions: 

RQ1 -  What is the current usage of predictive control with reinforcement learning for energy 

management? 

RQ2 -  What usage has been found for model predictive control? 

RQ3 -  How to integrate user preferences into Model Predictive Control with Reinforcement 

Learning? 

1.4 Contributions 

The following section outlines the thesis contributions to both the scientific and societal 

spectrums. 

Planed Scientific Contributions 

This work was developed by Bruno Rosário as a master’s thesis for an Artificial Intelligence 

course in School of Engineering of the Polytechnic of Porto (ISEP), it aims to develop and 

evaluate a system that uses Model predictive control with reinforcement learning for energy 

management. 

The thesis contributions to the scientific field can be resumed as: 
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SctC1 - A review on the background concepts, benefits, motivations, and challenges of the 

intelligent management of flexible electrical assets. 

SctC2 - A comprehensive literature review on the existing techniques for energy flexibility 

management.  

SctC3 - The results of implementing and benchmarking, AI-HEMS, a decentralized multi agent 

model predictive control reinforcement learning algorithm for managing flexible assets. 

1.5 Thesis Structure 

Section 2 - Background and State of the Art, this chapter goes into the general background 

information about smart grids, Model Predictive Control and reinforcement learning, it also 

delves into what the current strategies of Predictive Control with Reinforcement Learning, the 

use cases of Model Predictive Control and how to integrate user preferences into Model 

Predictive Control with Reinforcement Learning. 

Section 3 – Solution description – this chapter delves onto a more critical and higher-level 

analysis, where some design and future problems will be explained. This chapter will also delve 

into the data protection and security side of an implementation.  

Section 4 – System Overview – in this section it and explanation of how the system proposed 

was implemented, it is architecture, and the general algorithms used in this system. 

Section 5 - KPIs, Data set information and Test cases – this section explains the KPIs used for 

this project, how the simulation environment works and explains the dataset and the 

information contained in it. 

Section 6 – Results – This section presents the results achieved by this system and comparing 

to other systems. 

Section 7 – Conclusion - this section presents the conclusions that we were able to reach with 

this project, future work, improvements, and key findings. 
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2 Background and State of The Art 

To understand the thesis thematic and to refine the proposed solution (presented at Section 

1.2) this chapter aims to respond to the research questions presented in Section 1.3.2. 

2.1 Background 

Here it is explored some background concepts to better understand some critical ideas and 

systems. This ensures that the reader has all the tools to understand the major points of this 

thesis by explaining in higher detail what Reinforcement Learning, Model Predictive Control, 

energy communities are and introduces the citylearn framework. 

2.1.1 Base Concepts 

The following sections present the main concepts related with Reinforcement Learning, Model 

Predictive control, and energy communities. 

2.1.1.1 Reinforcement Learning 

Reinforcement Learning is a type of ML that evaluates the changes on the environment to 

create a better ML algorithm though the iterative nature of this method. 

In this RL we have 3 distinct parts of the system the state space, action space and a reward 

signal. 

• state space – the state space is all available information that exists and is useful for the 

system, this information can be measured or estimated [9]. An example of a state space 

on the scope of this thesis this would be the collection of sensor data and smart 

appliances. 

• action space – The action space is all the decisions that the system can take [9]. An 

example of an action space on the scope of this thesis would be to charge, discharge, 

or do nothing with the static batteries, turn on flexible loads. 

• reward signal – the reward signal is a value that measures if the action had a positive 

or a negative impact on the overall performance of the model [9]. An example of a 

reward signal on the scope of this thesis would be the error of the predicted value to 

the true value after executing the actions. 

The generic operation of an RL algorithm is as follows: 

1. gather the variables of state space. 

2. the system decides an action to take by taking the variables of state space. 
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3. actions from the action space are selected and executed on the environment that the 

system is being run. 

4. a reward is calculated by checking how the environment responded. 

5. that reward is used to calibrate the system. 

6. Restart the loop by going to the first step. 

 

Fig 3 – simplified version of a reinforcement learning algorithm [10] 

The generic operation of a reinforcement learning algorithm as seen in figure 3 is based on an 

agent interaction with an environment, receiving its new state and a reward, the Environment 

can be physical, simulated, or virtual in nature.  

In certain cases, it is possible to add constraints and uncertainty into the model [9], constraints 

can be something like the power remaining of the battery cannot be lower than 0 and on 

uncertainties we can have the example of a blackouts, most blackouts cannot be predicted. A 

way to insert uncertainty onto a RL model is to penalize when the system fails to deliver an 

acceptable answer [9] on the case of this thesis the user using more energy due to using a oven 

and overshooting the available power budget is seen as a uncertainty, the reward on this case 

should heavily penalize the system. 

RL can be either online or offline trained. On one hand, an online RL system is trained with 

either a simulation or where applicable, a physical space, where the system takes an action 

usually with uncertainty, that action is executed on the environment a reward is calculated and 

returned onto the system. On the other hand, offline RL systems where offline trained systems 

are trained using historic data and learns the policy though that data, this dose create a less 

responsive system [9].  

 

2.1.1.2 Model Predictive control 

A MPC is an algorithm which predicts the control of a system using a mathematical model. A 

MPC works on a time scale, where the model has a reference X, a set of possible input variables 
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Y, a set of measured outputs O and a cost function C where X, Y and O are vectors. Some MPC 

models will also consider disturbances but that will not be discussed here. 

The MPC First will look towards the current reference 𝑋0 and the current measured outputs  𝑂0 

where an optimal control of the input variables 𝑌0  is found by minimizing C, the types of 

algorithms to calculate Y by optimizing C will be discussed later in this document, using the 

calculated 𝑌0 control vector the system will try to predict the next system measured outputs 𝑂1  

where the same reference or a new set of references values 𝑋1 is used to once again calculate 

new inputs 𝑌1 and the system restarts, until either a stop condition is reached usually 20% of 

the samples [11] or an equilibrium is reached where an equilibrium can be achieved and the 

optimal solution is executed. 

  

Fig 4 - MPC optimization loop 

In the figure above  𝑋 is a function or a set of parameters that indicate what is the reference it 

should target. E.g. a temperature set point or an EV range. 𝑂 are the predicted outputs for the 

current iteration of the model. 𝑌 is a set of actions the system can take, can be a simple turn on 

or off or a more complex one like how many watts of cooling to use. 𝐶 is a cost function to 

obtain the most favourable outcome for the system.  

An MPC algorithm can have different classes like linear, nonlinear and hybrid. 

• Linear MPC is a type of MPC where the objective function is linear or quadratic and the 

prediction model is linear [11]. 

• Nonlinear MPC is a type of MPC where the objective or the prediction model is non-

linear [11]. 
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• Hybrid MPC is a type of MPC where the prediction model is linear, but it employs other 

types of constraints like switching dynamics, binary or integer control variables, logic 

states or constraints [11]. 

There is also the Implicit MPC and Explicit MPC, an implicit MPC is a type of MPC where a 

solution is calculated at the run time by trying to achieve the best possible solution, this is 

done by an iterative method where the optimum solution set is recalculated until it reaches 

convergence [12].  

An explicit MPC where the optimum solution is precalculated, to achieve this we separate 

the system in regions where the system starts by calculating a region and it is optimum 

function, this reduces the amount of processing power needed to achieve a good solution 

while reducing the region of values that is needed to be searched [11]. 

2.1.1.3 Energy communities 

An energy community is an aggregate of buildings normally close geographic proximity usually 

with self-energy generation either by building or as a community space, can or not have means 

to store the energy like batteries and the buildings have means to communicate and manage 

the energy system as shown in figure 5. 

 

FIg 5 – Energy community scheme from [13] 

These communities have three different types of members the producer members that only 

produce electricity, the consumer members that solely consume electricity and the producer 

and consumer member these last combine the energy production and usage of the other two 

by having means to produce and utilize energy like having a solar panel on their house. 

Energy communities have a decentralized production system this helps increase its resilience, 

the decentralized nature of this idea means that renewable energy generation is favoured to 

more traditional and more pollution methods. The community shares electricity means whether 
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that be by the sharing of excess production or the trade of electricity, this ideal is also very 

connected to smart grids a further explanation of smart grids can be read at 1.1.1. 

2.1.1.4 CityLearn Framework 

The CityLearn Framework is a project developed by Jose Vazquez-Canteli, Kingsley Nweye and 

Zoltan Nagy that aims to provide an environment to test solutions to the electricity 

management problem it supports the management of self-production means like photovoltaic 

panels, the use of static batteries, use of climate control between others, CityLearn handles the 

management of data and handles the calculation of other metrics like the amount of energy 

that a building uses, this means that anyone can create a dataset or an agent and publish it and 

other researches can use them [14]. 

CityLearn already provides some agents that can be used to evaluate against other systems and 

provides some datasets both of which will be used later to get the comparation of results and 

the environment where we are going to compare against other systems to access the 

performance of this system. 

2.2 State of the Art 

No one starts from scratch, there is a need to understand what has been previous done, 

problems that other projects had and the solutions they found, research question 1 is a general 

state of the art where there is the search of similar solutions and how they were implemented, 

while research question 2 and 3 go into more detail on a specific point like the integration of 

electric vehicles and how to implement user preferences onto a MPC-RL system, this gives a 

broad vision of the current state of the art and how to proceed with the development of this 

project. 

2.2.1 Research Question 1 - What is the current usage of predictive control with 

reinforcement learning for energy management? 

The systems that were found that used predictive control and reinforcement learning for 

electrical energy applications where different models like CNN-LSTM, MPC, RL, MPC-RL, MPC 

with Q-learning, online DRL training, offline DRL, RBC model, MILP-MPC models and DRL. 

Due to the differences in simulation environment, goals and use case it is not possible to 

compare one system to another at this phase thus each study was individually addressed. 

A study comparing transformers and Convolutional Neural Networks and Long-Short Term 

Memory more known as CNN-LSTM with an application in Heating, Ventilation, and Air 

Conditioning systems where the neural network using transformers had a better performance 

than the CNN-LSTM and this solution saved almost 50% of energy compared to traditional 

methods [15].  
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Another study compared MPC, RL and MPC-RL models, this study used BOPTEST another 

simulation environment to evaluate the different systems. It was found that although MPC has 

a short fall by being too static RL can address this by adapting the model to the needed system 

[16]. 

This study analyses the difference between online DRL training, offline DRL, an RBC and a MPC 

based system. This study had as an objective the cooling of a room where it was found that the 

online DRL model had the worst performance, MPC had the best performance with the offline 

DRL model a close second, the RBC was worse by a small margin to both the offline DRL and the 

MPC [17]. 

Another study focused on a MILP-MPC system for an energy community with the use of a Q-

Learning RL algorithm for energy planning, where a central energy system with capacity to store 

the energy was used, had V2H capabilities and solar panel energy generation. Although more 

focused on energy management it did find that aggregating an energy community did create 

the situation where more energy was sold, and less energy bought than a system that was more 

individualistic [18]. 

A study also tried to use an MPC-RL model on 3 households seeing an improvement of 17.5% in 

electricity costs while combining uncertain user demand, renewable power generation, 

managing peak power and market prices. This study one was based on a dataset of 3 households 

in Oslo, Norway thus making the simulation closer to reality [19].  

A study about a home energy management system using MPC-RL model managed to satisfy 

thermal comfort and reduce costs by managing a battery and the house thermal inertia [20] 

[21]. 

The last study to look at used a DRL algorithm for hot water temperature control to optimize 

the usage of Photovoltaic panels, was able to keep the user’s comfort where a temperature was 

specified at a specific time and the system needed to have that temperature at 99% of the 

setpoints of that temperature, it managed to have 16% of energy savings while improving 

Photovoltaic Usage for self-production and increased renewable energy consumption by 9.5%, 

when paired against a RBC algorithm [22]. 

It is possible to infer that an MPC-RL model can be used to control and manage energy 

communities, while taking the short comings out of just a MPC model, a paper also observed 

that a MPC system managed to beat an offline trained DRL, an Online trained DRL and an RBC. 

After evaluating the solutions a MPC-RL based solution should offer good performance on 

energy management although most systems focus on small parts like temperature 

management there were others that already combine home energy production with this types 

of systems and those studies also have good performance, certain techniques like energy set 

points are going to be used later on this paper, we also saw that utilizing a RL with a MPC model 

makes to model able to have better performance and adaptability. 
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2.2.2 Research Question 2 - What usage has been found for model predictive 

control on Energy management with electric vehicles? 

A MPC system can be used in multiple ways using electric vehicles from thew objective of this 

thesis building energy management, traffic energy management, EV charging management, 

wheel power management and battery management. In this research it any vehicle that is not 

fully electric is not considered, there is a need to also investigate other vehicle types like hybrids, 

fuel cell electric vehicles and range extended electric vehicles. These types of vehicles are not 

taken into consideration due to the nature of this thesis.  

Tacking first the traffic energy management a speed management system was tested with the 

regenerative braking energy used to run the car AC [23] another system was proposed where 

constraint stochastic model predictive control was used to plan the speed of the vehicle and 

improve powertrain energy management [24] another research paper proposed a system to 

manage battery usage by choosing what motor to enable for the most efficient energy usage 

[25], a similar system was also proposed where only 2 engines exists that system managed to 

improve speed tracking accuracy by 58.93%, the high efficiency range of powertrain by 40.93% 

and electric consumption was reduced by 9,29%, [26] with a last research being done on 

improving energy consumption and the life of mechanical parts of the car on a two motor 

electric car [27], a system was also proposed where a user would input the needed charge for 

the predicted usage of the vehicles and the system would coordinate that user input with other 

users to manage the EV chargers [28]. 

The second use case EV charging management where all followed the same system the charging 

station has access to renewable energy and the grid, one incorporated batteries on the system 

to maximize the renewable energy usage [29], another uses a predictive system to buy the 

needed energy from the grid to supplement the renewable energy generation [30] and lastly a 

system to incorporate Photovoltaic generation prediction and when vehicles connect and 

disconnect [31], another approach can be to predict the car usage to optimize charging times 

[32]. A system was also proposed for four-wheel-independent-driving electric vehicles 

management system [33]. 

A traffic energy management is a great tool that EVs can exploit, the usage of vehicle-to-vehicle 

communication and vehicle-to-infrastructure communication can be used to optimize the 

speed and braking of a vehicle this will improve driving safety, comfort, and energy economy of 

EVs, another avenue for EVs are supercapacitors/battery EVs on this type of EVs both types of 

energy storage medium have different use cases where a predictive system can help manage 

both systems, this did result on the decrease of battery degradation [34] another way to see 

this is to incorporate a similar tool to the vehicle-to-vehicle with sensors and use a system to 

first optimize electricity cost and ensure safety and second to minimize the battery degradation 

and power loss [35]. Lastly the use case of the proposed system of this thesis integrating EVs 

into Household energy management where a EV can be used to reduce electricity bills and EV 

battery degradation costs while maintaining amenities like thermal demands [36], used as a 

storage medium inside a micro gird [37] while reducing peak load on the grid [38], managing 
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multiple EVs to increase or decrease the charging time [39], energy management withing a 

smart community to better allocate resources from the grid [40], another use case is one where 

the speed of charging changes with the HVAC needs of the building [41]. Still within this group 

we find the Household electric systems where a photovoltaic Source is used with heat pumps, 

a thermal energy storage and the electric vehicle being used as a battery to supply energy into 

the house are taken into account to optimize cost and emission optimizations [42], another 

system even proposes that the energy stored at the EV be used to sell to the grid [43]. 

A MPC system can be used for many types of system, the types found that are not important to 

this thesis were the traffic related management and the battery management systems, where 

we find the systems capable of optimizing the EVs during use and in the case of one optimize 

each individual wheel, a system like the ones described above could be a great way to reduce 

energy consumption even more thus easing the transition into fully renewable sources. A way 

to better and more efficiently manage charging with multiple EVs is also a good avenue of 

research this one more focused towards large charging systems and less the household one, on 

the household front we see the prevalence of the usage of EVs as a way to use more efficiently 

the photovoltaic power generation, store energy for later usage without forgetting that it is still 

a vehicle and should be used as such being the power storage more a nice bonus and less the 

primary goal. 

2.2.3 Research Question 3 - How to integrate user preferences into MPC-RL 

models? 

The usage of reinforcement learning implies that a way to appraise how good or bad a solution, 

and due to the nature of this system a way for the user to manage and better suit the system 

to their own needs. For that a solution that integrates Reinforcement Learning with user 

preferences must be integrated. 

In this research it was found 6 such examples where two have hard constraints and six with soft 

constraints. 

Checking the ones with hard constraints first we have a system where the user tells the type of 

ride that wants where it can either share the car or not [44], the second where the user tells 

the system  the waypoints it needs to arrive to and the order [45] , this systems although valid 

and with proved use cases, on the proposed system of this thesis these restrictions should be 

integrated within the MPC part of the system and not the RL. 

The soft constraints that were found where defined by a range or a more subjective user input 

apart from one. Most systems focused on thermal energy management with 3 different 

approaches the first with discriminated temperatures at set intervals where the system should 

hit those values a certain percentage of the setpoints [46] , the second where a temperature 

range is set, and the system has to have the temperature between that range at specific 

intervals [47] ,the third and last has both systems where an acceptable temperature range is 

set with a preferred temperature where between that range the rewards of the RL model are 
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less than outside the specified range, if the system hits the target temperature it receives 

maximum rewards, the rewards is reduced within the range with a large reduction outside of 

that range [22] . The other soft constraint system is going to be analysed differently, the system 

has the following available user inputs, Safety, Speed changes, length of trajectory, waypoint 

deviation and planned ETA, each input can be set with a range of natural numbers between 1 

and 10, the ranges selected are then normalised before being used [48]. 

The hard constraints even if the user input can change them are better suited to be used inside 

the MPC, looking at the soft constraints, we have 2 different systems, the system where a 

preference like temperature, is continuous in range and time, the preference needs to be met. 

The other system is more generalized and dependent constraints, like in our case, the 

constraints self-reliance, battery usage, EVs in the V2G capacity, cost and CO2 footprint where 

a system like [48] is interesting to research where the user can set the multiple preferences to 

a value within a range and the normalized values used as the input and not the direct user input, 

one such case could be cost and CO2 footprint where if the cost of energy is negative and the 

user inputted both as maximum priority can create problems that are mitigated by normalizing 

the results. 
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3 AI Powered Home Electrical 

Management System  

This chapter explains and proposes how the system should be integrated, this chapter is an 

explanation on the full system with more development should be done it answers some 

problems like how to better manage and what a central system should do, it delves into the 

security concerns and answers it, giving a full overview of the planning phase of this system. 

These types of systems are usually called Home electrical Management System, abbreviated to 

HEMS, these systems can also integrate an artificial intelligence component, so the name AI 

powered Home electrical Management System abbreviated do AI-HEMS gives the perfect idea 

of what this system does and how it does it. 

3.1 Project overview 

The system is designed to work solo or in tandem with other systems with that in mind a fully 

modular system helps to implement these two criteria. 

The current implementation works solo on each building thus the priority system was not 

implemented, this is a requirement for future implementation of a central agent. 

A layered priority-based policy is introduced to better accommodate the community aspect of 

this proposed system, this system allows us to firstly abstract from the individual parts of the 

system, two improve and ease user input systems and ease of use and thirdly to abstract the 

data and improve safety when transporting data outside of the user’s house. 
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Fig 6 - Diagram of types of scenarios 

A modular system brings inherent benefits to this problem, a way to ease the introduction of 

this system and the natural growth of it. A user can install the system on his building and the 

system would work without any other similar system near as shown on Fig 6, of course the 

benefits would not be as good as if the entire community had this system but having a way of 

starting this system on a community with only one building needing it, then later as other would 

join the rest of the system like the central manager can then be installed, for such things to 

happen the system must guarantee to improve energy billing even when working without a 

central management system. 

The layer priority system helps to simplify the priority implementation, and a user’s ease of use 

by simplifying the priority system for that there is 6 priorities listed below. 

Priority 1. Critical Public Infrastructure – the critical public infrastructure like water 

distribution, emergency communication lines, hospitals, etc. must be maintained 

supplied, this part of the system the user cannot change the priority level of this level. 

Priority 2. The system – the system must consider and must keep it self-operational on 

this part of the system the user cannot change the priority level of this level. 

Priority 3. Important building systems – on houses this would be a fridge/ cooking 

appliances and lights, on a commercial building it can be lights and the security system, 

on this part of the system the user can and should change the items on this priority 

level to better suit it is needs. 

Priority 4. Essentials – this is important systems that have a smaller importance than the 

more critical mentioned on priority 3, this would be washing machines, hot water, and 
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more critical amenities, on this part of the system the user can and should change the 

items on this priority level to better suit it is needs. 

Priority 5. Comfort and wellbeing – here we have everything that does not fit the 

categories above, like a tv or a computer.  

Priority 6. Batteries – The batteries should be the last thing to consume energy, it should 

consume only when the other priorities have been met. 

The case for shiftable priorities we can take the example of batteries, where a user might want 

to always have a small percentage of the batteries to use in case of a blackout for that the 

batteries should not be on priority 6 but a higher priority, this is a user preference and 

something to consider, so under certain situations some systems might increase or decrease in 

priority. 

Due to the way the data is sent to the higher system by the priority system, it ensures that 

critical information is hidden, it also allows to latter create a system to analyse how much of a 

routine with that information can be inferred and penalise the system accordingly. 

The idea of predicting for t+2 should also be investigated, because it allows the system to have 

more time to find the best solution and, reduce the impact of updating the system, since the 

system already predicted the t+1 and knows what to send at that iteration so it has 1h to do 

what it needs to do, this also puts much less strain on the speed of the central system due to 

having more time to process this can be achieved by reducing the time a system has to process 

from the theoretical 1h to a lesser time. 

3.1.1 System Architecture 

The system architecture was made so the model and optimization algorithm were easily 

changed this was achieved by the way the CityLearn agent was made. The CityLearn agent that 

is exposed to other applications already gives a degree of abstraction by sending the 

information in a standardized way, this means that in case the agent is or is not centralized, a 

flag set at the configuration of CityLearn, the way the agent is programmed is always the same, 

but since early on the development of the system, the idea of it being decentralized was always 

at the centre, this allowed for another abstraction layer that being the building object, this 

building object handles all of the information related to the building it saves the model that 

represents it, creates the inputs and gets the current information that was provided and saves 

the actions to take, reducing the amount of processes on the Citylearn agent those being 

updating the buildings, start the optimization algorithm, set the Citylearn action variable and 

call for the next time step. This means that all the needed information relative to a building is 

already separated and each building is processed the same way with the same algorithm, there 

is no need to handle the building logic inside the optimization algorithm. There is also a data 

retrieval in the agent but that was not made modular. 

The optimization algorithm just needs to ask the building to create the input and give the 

actions that it needs to evaluate, the building will then process the inputs and calculate the 
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objective function to then send again to the optimization algorithm thus easing the 

implementation of the algorithm. 

Both the model and optimization algorithm have standardized ways to implement both having 

an init where the main configurations are saved and for the optimization algorithm just another 

function is needed to start the optimization, while the model has 2 other functions the predict 

that runs the neural network and the fit that handles the logic in training the neural network. 

The prediction of each element should itself be isolated from other predictions for each time 

step, since each prediction is only dependent of our own actions from each time step, the 

prediction is of an outside element like the outdoor temperature or in the case of hours and 

months a static prediction that only relies on previous information, this system allows for the 

mismatch of different sources like the meteorological service for the outside temperature 

prediction or prediction models for other predictions that are more individualistic like the solar 

generation of each house. 

The system was modeled after the citylearn implementation of an agent, where the standard 

implementation of some functions was implemented. Those functions manage standard parts 

of the agent like the initialization of the object setting the action map, it was also overwritten 

the predict function to implement what was described on this thesis, the predict function itself 

gets called every time step and it is also responsible for advancing the time, the loop of this 

function is simple if the objects for each building were not yet created it initializes them, giving 

a list of set parameters to ignore like the month, day type and the hour, if the buildings were 

already initialized that mean that we are at the first hour and thus we can start aggregating the 

data to later get our information, after that all building observations are updated and a function 

to fill the individual actions of a building is called, then the standard way of setting actions and 

go into the next time step is called. The function to fill the individual actions of a building works 

by calling the optimization algorithm and saving the actions and the predicted values, the logic 

for the rules-based controller that works for the first 2000h in the case of the case studies 5 to 

7 is also implemented here. The optimization function works as a simple implementation, since 

all the settings/ input of the model are saved to the building object, that has a predict function 

that handles all the logic of taking the set of actions and getting the value of the fitness function, 

by simply calling the model predict and saving its outputs at each step of the action test object. 

3.1.2 Other Approaches 

Other approaches can be adding a more complex central system that uses more information, 

this causes the problem that a user’s routine can be more easily inferred, this is a large security 

concern and can drive away potential users, there is a large focus of anonymity in processed 

data and giving more information to a central system and not an edge system like this one was 

designed can create such vulnerabilities and legal data protection considerations. 

At some point the possibility of predicting more abstract values like the user’s mood could be 

researched and implemented, but the methods and or data can prove tricky to adjust on a per 
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user case. This also goes against a design philosophy of this system that all predictions are based 

on hard data like the temperature of a house, it is something that can be effectively measured 

and quantified, and that the user has an instinctive understand of, like it is indoor temperature 

preference or his energy usage vs the current price, this removes the user error in self-

evaluation there is no prediction if the user feels more comfortable or not, this in the future 

can just me a way to measure how good the solution is, replacing the objective function with 

something less intuitive or adding the prediction of the user comfortability with the future 

predictions can be a value in the objective function in conjunction with the other values like the 

utilization of self-generated power. 

The use of a large system that englobes all of the energy community or even multiple energy 

communities is also a route that can be taken although it reduces the users ability to control 

the system and optimize for its use case, this approach should be able to better optimize for a 

given parameter and common goal, also something that goes against this systems design 

philosophy of letting the user preferences and final objective easily changed, even if those 

setting are not better for the user. 

There is a case to be done for having more of an all-in-one algorithm where the output is only 

the actions needed to be taken, this system again should be better and more optimized but is 

this system being optimized for only one parameter or can the user choose, and what impact 

on the system dose the user changing its idea have, dose the system need to be trained again 

to find a better solution for that new objective function, common logic says that the old data 

can be used with the new objective function but how much time dose the system need to 

achieve a stable point, the proposed system just takes the current user’s objective function and 

due to being based on hard data and an optimization function, it can change at the next 

algorithm iteration without the user having a time with worse performance. 

3.2 Data protection, Safety and Ethic concerns 

3.2.1 Data protection  

The nature of this data implies that it is possible to understand the user’s routines and current 

status, this information is very dangerous, a bad party can use routines to know when a user is 

outside the house or that the lights work at weird times of the night this latter one can be an 

indicator of a user’s health problems, an insurance company if had this data could increase or 

not insure a user, this data needs to be heavily protected , for that the distributed system and 

encryption with the current data system that does not send direct user behaviors through the 

internet, also a state of the art authentication system needs to be used to ensure the 

information is being sent to the correct computer and prevent man in the middle attacks.  
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3.2.2 Data Safety 

Data Safety can be explained by the CIA triad where CIA stands for Confidentiality, integrity, 

and availability. On the system part Confidentiality can be assured by user data not being 

accessible outside of a building and encrypted within the system on the case that old user data 

is of use for improvement, on the case that old user data is no longer of use it should be deleted, 

to ensure that only authorized systems can communicate within themselves state-of-the-art 

authentication systems and encryption should be used, none can be selected by the author due 

to the constant evolution on authentication systems and encryption. 

As for integrity the information should not be able to be tampered with, like the authentication 

and encryption problem there is constant evolution on this field so the author chooses to refrain 

from any requirement the only stipulation is that like the authentication and encryption this 

system should be state-of-the-art and adequate to this system. 

Last but not least availability, due to the nature of this system, it focus on always being online 

with at least down time as possible this is ensured by always having the preference on making 

sure it has energy for himself before any other system is considered, availability is also the 

communication of data whether that be by a fiber optic cable, wi-fi or any other communication 

medium, on this further assessments and real world tests need to be executed to achieve a safe 

and reliable communication medium. 

3.2.3 Ethical considerations 

As of writing the author does not have any ethical considerations or concerns that he is aware 

of. 



 

39 
 

 

4 System Overview 

In the previous chapter it was described where this system fits in a generalized way, the system 

should also be able to be individually used, this guarantees that this system can find more 

costumers due to reducing the initial set up, but when this system is present in multiple houses 

a centralized system might be needed to further optimize. But since even if there is a centralized 

system, each individual building is still optimized by itself the system presented only optimizes 

itself. In this chapter we are going to delve into the implementation of the system. 

4.1 System implementation  

This system has the objective to manage an individual building the information that the system 

receives comes from the CityLearn framework, that provides a set of individual set of 

observations per each building as shown in FIG 7. In turn the system manages individual assets 

like a static battery a cold storage and a domestic hot water, further assets are possible to be 

managed but due to the limitations of the CityLearn framework this avenue of optimization 

cannot be researched here. 

 

Fig 7 – individual building Diagram 
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Fig 8 - System architecture diagram 

As shown in fig 7 the system architecture starts with citylearn sending the current known 

observations to the agent implementation, the agent then updates the current known data of 

each building, and the information relative to the model evaluation is extracted, then it is 

requested to each building the set of actions most optimal for them, this in turn starts the main 

building loop of where the optimization algorithm requests to evaluate a set of actions that are 

then requested to the model the predicted effects though each time step in this paper the 

system will predict 3 hours into the future, the optimization algorithm receives a number 

relative to how “good” the solution is, that in this paper calculated through the following 

equation: 

∑(1/4)(𝑃1(𝑛 − 1) + 𝑃1(𝑛)

3

𝑛=1

 

Where P1 is the net electricity consumption prediction given by the model and n is the time 

step. 

The set of actions of each building is then sent to citylearn and the cycle repeats. After this 

introduction now we present a more in depth investigate the system. 

The main part of the system consists in creating and managing the environment, first files 

pertaining to a previous run are eliminated and the needed directories are created, a file that 

contains the next parameter to test is loaded, the first line is removed and the system starts to 

create the CityLearn environment the environment contains the chosen dataset that in this case 
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is the citylearn_challenge_2021, we are not going to delve into the dataset here further 

information about the dataset can be found in section 5.1.2, and the central agent flag is set to 

false this flag if set to true aggregates all the buildings into one list as the flag is set to false the 

building observations are separated per each building, and in case there is the need to finish 

earlier the simulation end time is set with the desirable value, this was used in the case studies 

1 to 4 where more information can be found in section 5.3. After setting up the citylearn 

environment an agent object is created and is run. After the agent finalizes the simulation, the 

information contained in the run files are summarized according to the KPIs needed see section 

5.2 and some graphs are generated using matplotlib’s pyplot, for the case study 5 the KPis 

pertaining to the CityLearn framework are also saved. During the tests of the environment this 

would loop again to get the next test value. 

The customized agent class that was implemented for this thesis has 2 large functions the 

predict that is called by the CityLearn framework and the fill actions, this latter exists to ease 

multithreading implementation. The predict function first starts by checking if there is already 

a building list if there is none one is created, and each building object is filled with basic 

information, the building information is later in this chapter, if the building list is already created 

than it runs the building function that allows to fit the model. The data required to retrieve at 

each time step is saved to a directory in individual files to later be summarized, after each 

building observations are updated, and the fill actions object is called for each building, after 

each building has finalized getting their actions the action variable is set with the new values 

and the CityLearn function to start the next time step is called. The only difference between the 

case studies 1 to 4 and 5 to 7 is that since it only needed one building, although all buildings 

were created, only one was being monitored with the others having random action variables. 

Continuing in the agent the fill actions function as the name suggests handles in filling the 

actions of each building individually, it creates an object of the optimization function and sets 

the main variables like the building that will optimize, the action names, the iterations and the 

particle number, after it creates the array that contains the upper and lower bound of each 

action, after it calls the optimization function that returns the actions and the predicted values, 

the predicted values are saved on a building variable to latter be used to extract the data 

needed in the case studies, if the current step is under 2000 it calls the simple RBC code 

provided by CityLearn, after the 2000th time step the values found by the optimization function 

is set in the actions array. This concludes the logic that the agent implementation has. 

The building class is a layer of abstraction, it saves information relative to each building like the 

name, the action names, the observation names and created the model. The only function of 

note is the fit function that runs the logic to be able and fits the model. 

The MPC needs an optimization algorithm, that here is its own class that has the optimize and 

calculate objective functions, the optimize function has the logic pertaining to the optimization 

algorithm that in this case is the particle swarm algorithm that is further explored in 4.3.2.1. 

The calculate objective function as the name suggests calculates how good a solution is by 

calculating it following the objective function described above, it does this by calling the predict 
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function of the model inside the building, now this only gives the prediction of the impacts on 

one set of actions, this impact is then translated into a new input of the neural network, that 

now can run again with another set of actions this gives the prediction to T+2, this cycle of 

getting the prediction, creating the input and getting the prediction for the next time step is 

iterated for each set of actions, after getting all of the predictions the value of how optimal this 

set of actions is, is calculated and returned. 

With the main agent, building and optimization classes explained that only leaves the model 

class to explain the behavior and implementation. The model class has the init like the others 

where all of the information relative to the model is done, in the case of the models that used 

the neural networks this meant that it was here that the neural network was created, it had a 

input layer followed by the definition of all middle layers, and ended with the output layer, since 

this function receives the layer information the number of units in a layer was set here as the 

learning rate of the network was also set, this object is then stored to be used latter. In the case 

of the ensemble methods the same happened here, with different parameters this being what 

ensemble methods to use like the number of estimators or the learning rate in case it has one , 

in the case of the regressions the same happened but to a list that has all of the objects 

generated this allows later to use a simple average to try to achieve a better result. For the Case 

study 5,6 and 7 this was switched to a hard coded model, it used the same methods just not 

receiving the information from the main system or a file. 

For the neural network implementation, the fit and predict functions handled the information 

it received and set it in a way that it can be inputted into the networks, this was mostly handling 

arrays and changing the odd value to float, after that it would call the fit or predict function of 

the TensorFlow object. 

The ensemble implementation differs from the neural network since there is more processing, 

the input data processing is still present now more simplified, but each function had differences, 

the predict function had the ability to get multiple predictions from multiple regressors and do 

a simple average, this not being something that makes sense in the previous neural network 

implementation, the fit behaves similarly to the predicts where it can fit multiple regressors at 

the same time, the fit function deviates from the neural network implementation by only fitting 

every 2000 iterations, this was done since most regression models cannot be partially fitted and 

neural networks can get new data added without a large computational loss, another point to 

make the regressors fit every 2000h is that opposed to the neural networks the regression 

models had to be fitted form scratch this was computationally heavy and takes some time even 

with the training multithreading implemented where multiple models could be trained at the 

same time it still took too long to be able to get the end results needed for this thesis in a timely 

manner. 
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4.2 Methods used 

A model Predictive control needs multiple systems, there is a need for a model algorithm to 

evaluate the impact of the actions into the future and an optimization algorithm. These models 

can be created by using previous knowledge of the environment to create a mathematical 

model or like in this case use machine learning techniques to get the same, the impacts of the 

actions on the future of the environment where they are enacted. As there is a need for a model, 

a way to optimize the search of the best action or set of actions to take is also needed where 

for this system the particle swarm optimization was chosen. 

 

Fig 9 – Different types of methods used relative to where they act. 

As it is possible to see in the above picture there were different needs for different parts of the 

MPC implementation it was tested 4 different models to be used as the MPC model, one 

optimization system to predict what is the best path to take, there was no need to implement 

a control system since CityLearn already has one implemented on every agent. 

4.2.1 Model algorithms 

In this section the different algorithms used as the model in this implementation of a house 

management MPC are described, the LSTM and timeseries implementations the TensorFlow 

framework was used to ease the development, while for the ensemble and regression models 

the framework scikit-learn was used, and additional custom-made logic to manage this last 

model was also made. 

4.2.1.1 LSTM 

This first implementation was based on a single input and multiple output model 
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Fig 10 – A example of a multiple input multiple output neural network logic used here. 

Although the above image shows how the LSTM network was designed where only the input 

layer connects to a hidden layer and the hidden layer has a direct non crossing connection to 

the output layer this allows to change the topology of a specific prediction without changing 

the topology of other predictions this makes the implementation a lot more responsive to 

future need simply because since all predictions use the same input, to add a new prediction all 

that is needed is to append to the network a new arm, there is no need to retrain the other 

arms, this also allows for different number of neurons and different number of layers to better 

suit each prediction needs. 

Because this was the first implementation it only predicted the state of charge of the different 

batteries and the internal temperature of the house, the inputs for this model are the current 

observations plus the actions to take. 

4.2.1.2 Timeseries 

This implementation was a multiple output system. That predicted all observations that a 

building could have, as shown in image 10 this model heavily relies on a large, interconnected 

network and not the individual one that appear in the LSTM implementation seen prior. 
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Fig 11 - LSTM base Timeseries model architecture [49] 

This has the disadvantage of being less easy to optimize and to react to future changes. The 

timeseries implementation is also a lot more memory intensive than both the LSTM and 

ensemble methods. This method was also implemented a standardization of the input values. 

The input values of this method were the same as before with the difference of the historical 

values of the last 100 days also present in the input. 

4.2.1.3 Ensemble/regression algorithms 

Ensemble methods work by using multiple estimators. An ensemble method will use a set 

number of estimators, those factors can be fully used or split into different subsets of the 

original information, depending on the method chosen, that in the end give a prediction value, 

based on the estimations from the estimators as shown in image 11. 
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Fig 12 - Example of a Random Forest with 3 decision trees [50] 

The regression algorithms work much simpler, to better understand the image below shows a 

linear Regression algorithm. 

 

Fig 13 – linear model example [51] 

A line function can be simplified to 𝑦 = 𝛽𝑥 + 𝐶 where β is the slope, and c is the offset on X=0 

of the line from the image above it can be noted that the linear regression cannot approximate 

a curve this is one of the problems of a linear regression while other methods might, depends 

on the implementation but the general is always have a function that tries to be as accurate as 

possible to the training data [52]. 

4.2.2 Optimization algorithm 

In this section the optimization algorithm used on the CS5 implementation is described, this 

algorithm should optimize the action values. 
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4.2.2.1 Particle Swarm 

The particle swarm algorithm is a meta-heuristic optimization algorithm that is inspired by 

swarm behavior. It is based on having multiple points that by using the knowledge provided by 

other points try and search the best option [53]. 

The way it works is by creating random particles with random velocities at the first-time step, 

then evaluating and saving the current best. After that iteration it alters the velocity of the 

neighboring particles to adjust to the best neighboring particles, this process of evaluating the 

current particles and updating the speed is then done again until a sufficient solution is found 

[54]. 

This method was chosen due to its advantages: 

• It is derivative free [53], since the user can switch its optimization function at will 

calculating derivatives can become a problematic situation. 

• It is a very efficient global search algorithm [53], since it searches the solution in a large 

optimization space. 

• It is easily parallelized [53],  this is a large point since the system needs to search for an 

optimal solution in a large number of variables, and the way the system is engineered 

having the option to run multiple searches at the same time is a large advantage. 
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5 KPIs, Dataset Information and Test cases 

5.1 Simulation information 

5.1.1 Simulation Environment 

The CityLearn environment allows a stable environment to compare different solutions on 

energy management, the environment allows for centralized or decentralized systems, in this 

case the decentralized (one per house) system was chosen, the dataset chosen was also 

provided by citylearn - the 2021 challenge dataset. The citylearn framework already provides a 

set of KPIs for algorithm evaluation this KPIs were used in CS5, defined in Section 5.2.2 [14]. 

Since this thesis proposes a decentralized system citylearn proved the best solution to this 

problem, it handles the simulation environment and has multiple implemented systems, 

another point was the ease of use with the most basic system being just a standard 

implementation of an agent, care needs to be taken to make sure that the agent is following 

the correct implementation since there is the possibility of having a decentralized agent 

behaving in a centralized fashion, but that high freedom of implementation dose allow for more 

complex systems like the one presented here. The entire MPC module, with some changes to 

the internal model behavior like taking into account other predictions that have since been 

implemented, simply be published online and everyone can use it and check it against another 

citylearn dataset or their own, CityLearn is also heavily documented and that online 

documentation helps with figuring out what some less instinctive values are like the actions 

behavior or how the SOC value is handled. 

5.1.2 Simulation scenario 

Derives from the dataset described in [55] that features 9 buildings, a medium-sized office, a 

fast-food restaurant, a standalone retail store, a strip mall and five medium-scale multi-family 

residences. It has details about air-to-water heat pumps, electric heaters for Domestic Hot 

Water, and on-site solar panels.  

The buildings are referred by their numbers, as presented in Table 1. 
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Table 1 – Building description to name list. 

Building type Building name 

medium-sized office Building 1 

fast-food restaurant Building 2 

standalone retail store Building 3 

strip mall Building 4 

medium-scale multi-family residences Building 5 to 9 

 

Every building contains the information described in Table 2. 

Table 2 – Data set observation listing [14] 

Name Descriptions Units 

month Month of year ranging 
from 1 (January) through 
12 (December) 

 

day_type Day of week ranging from 
1 (Monday) through 7 
(Sunday) 

 

hour Hour of day ranging from 
1 to 24 

 

carbon_intensity Grid carbon emission rate kgCO2/kWh 

cooling_storage_soc State of the charge (SOC) 
of 
the cooling_storage from 
0 (no energy stored) to 1 
(at full capacity) 

kWh/kWhcapaci
ty 

dhw_storage_soc State of the charge (SOC) 
of 
the dhw_storage (domes
tic hot water storage) 
from 0 (no energy stored) 
to 1 (at full capacity) 

kWh/kWhcapaci
ty 

electrical_storage_soc State of the charge (SOC) 
of 
the electrical_storage fro
m 0 (no energy stored) to 
1 (at full capacity) 

kWh/kWhcapaci
ty 

diffuse_solar_irradiance Diffuse solar irradiance W/m2 

diffuse_solar_irradiance_predicted_6h Diffuse solar irradiance 
predicted 6 hours ahead 

W/m2 

diffuse_solar_irradiance_predicted_12h Diffuse solar irradiance 
predicted 12 hours ahead 

W/m2 

diffuse_solar_irradiance_predicted_24h Diffuse solar irradiance 
predicted 24 hours ahead 

W/m2 

direct_solar_irradiance Direct solar irradiance W/m2 
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direct_solar_irradiance_predicted_6h Direct solar irradiance 
predicted 6 hours ahead 

W/m2 

direct_solar_irradiance_predicted_12h Direct solar irradiance 
predicted 12 hours ahead 

W/m2 

direct_solar_irradiance_predicted_24h Direct solar irradiance 
predicted 24 hours ahead 

W/m2 

indoor_dry_bulb_temperature Zone volume-weighted 
average building dry bulb 
temperature 

ºC 

indoor_relative_humidity Zone volume-weighted 
average building relative 
humidity. 

% 

net_electricity_consumption Total building electricity 
consumption 

kWh 

non_shiftable_load Total building non-
shiftable plug and 
equipment loads 

kWh 

outdoor_dry_bulb_temperature Outdoor dry bulb 
temperature 

ºC 

outdoor_dry_bulb_temperature_predicted_
6h 

Outdoor dry bulb 
temperature predicted 6 
hours ahead 

ºC 

outdoor_dry_bulb_temperature_predicted_
12h 

Outdoor dry bulb 
temperature predicted 
12 hours ahead 

ºC 

outdoor_dry_bulb_temperature_predicted_
24h 

Outdoor dry bulb 
temperature predicted 
24 hours ahead 

ºC 

outdoor_relative_humidity Outdoor relative 
humidity 

% 

outdoor_relative_humidity_predicted_6h Outdoor relative 
humidity predicted 6 
hours ahead 

% 

outdoor_relative_humidity_predicted_12h Outdoor dry bulb 
temperature predicted 
12 hours ahead 

% 

outdoor_relative_humidity_predicted_24h Outdoor dry bulb 
temperature predicted 
24 hours ahead 

% 

solar_generation PV electricity generation kWh 

The actions we can take are cooling_storage, dhw_storage and electrical_storage each number 

can change from -1.0 to 1.0 and it correlates directly to how much that specific system is to be 

charged and discharged for example: 

• The electricity storage system is currently at 0.5 charge, if the associated action value 

is 0.5 then the value of the storage system at the next timestep is 1 and the needed 

energy was absorbed from the diverse types of sources like photovoltaic panels or the 

energy grid. 
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• The electricity storage system is currently at 0.5 charge, if the associated action value 

is -0.5 then the value of the storage system at the next timestep is 0 and the energy 

removed form it is used to supply the house/returned to the grid. 

The observations above are true for the building 1,2,5,6,7,8 and 9 but since buildings 3 and 4 

do not possess a Domestic hot water storage element the associated SOC observation and 

action is not available, this does not influence the final results. 

5.2 Key Performance Indicators 

The KPIs is a metric that allows a comparation of multiple different solutions using a 

standardized system, for this application it was decided to have 2 different systems one for the 

evaluation of the models and another for the comparison between different solution. 

This is due to the metrics that are needed to evaluate change, since evaluating parts of the 

solution against themselves and the completed solution against other solutions have entire 

different ideas, since in one we want to check how accurate the model is and in another we 

want to compare the efficacy of the system in managing a household, these different 

evaluations have the need for different KPIs. 

5.2.1 Models KPI 

The KPIs for CS1, CS2, CS3 and CS4 (the model KPIs) what it is needed to evaluate is how 

accurate the future predictions are, for that effect, a 95th percentile of the absolute difference 

of the prediction and the real value, the standard deviation and the max value of the same error. 

This approach was chosen since it can tell the information that it is needed to know, the 

objective of the model part in this system is to create the most accurate inference model, where 

it can find the most accurate prediction, these metrics tells us what the max error and most of 

the error is located, the latter is to understand if the max error is just a outlier. Let’s take an 

example: 

If the 95th percentile error of the prediction of the indoor temperature is 1ºC and the max error 

is 20ºC, it shows that although the model dose give an accurate prediction within 1ºC for 95% 

of the time on 5% of the time the error would be 20ºC, comparing this to another where the 

95th percentile is 1.5ºC and the max error is 2ºC, although the 95th percentile is higher than the 

previous example, the maximum error is only 2ºC, although this system does have a higher 95th 

percentile error it is also more desirable since the maximum error is much lower. 

The observations that were used to test the effectiveness of the model were also chosen mostly 

by what it is possible to change with the actions that the system can make, only the following 

observations were taken into account, but after CS1 all of the observations a building can have 

were predicted, but since the system cannot change anything related to those observations, 
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they were not taken into account, although the same process was also done for all observations 

in CS5. 

Since we are only evaluating the accuracy of the prediction that is influenced by our actions 

only one building was used for that effect that being building 1 since it has all the needed 

observations and thus all the possible actions we can take, this also allows us to compare a 

possible generalization of the model that will be evaluated in CS5. 

The observations chosen to evaluate the models were: 

• cooling_storage_soc : it measures the available capability of the cooling storage from 0 

to 1 where 0 is empty and 1 is full. 

• dhw_storage_soc : it measures the available capability of the domestic hot water 

storage from 0 to 1 where 0 is empty and 1 is full. 

• electrical_storage_soc : it measures the available capability of the electrical storage 

from 0 to 1 where 0 is empty and 1 is full. 

• indoor_dry_bulb_temperature : it measures the indoor temperature. 

• net_electricity_consumption : Total building electricity consumption. 

Since this are the actual observations that the system can influence these are the ones that 

were chosen to evaluate the different models experimented. 

5.2.2 Systems KPIs 

The systems KPIs are used to compare the different solutions, these KPIs are already 

part of the citylearn AI gym. The KPIs are for single buildings only, since the system 

evaluated here dose not possess a central management system. 

• Carbon Emissions –This metric measures the amount of carbon emissions each 

individual building created to get all the needed energy supply. 

∑ (Energy from grid) ∗ (Carbon Intensity)

𝑛

ℎ𝑜𝑢𝑟=0

 

• electricity consumption – This metric measures the amount of electricity that was 

originated from the grid, it does not consider other energy sources. 

∑ (𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑒𝑑) − ((𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑟𝑜𝑚 𝑠𝑜𝑙𝑎𝑟 𝑝𝑎𝑛𝑒𝑠)

𝑛

ℎ𝑜𝑢𝑟=0

+ (𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑟𝑜𝑚 𝑒𝑙𝑒𝑡𝑖𝑐𝑖𝑡𝑦 𝑆𝑂𝐶)) 

• zero_net_energy – These metric measures all the electricity consumed from all sources. 

∑ (𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑚𝑒𝑑)

𝑛

ℎ𝑜𝑢𝑟=0

 

For all these metrics the lowest number the better the solution is. Of note all other metrics that 

are building based did not see any changes between models. 
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5.3 Case Studies 

Through the research it was felt the need to further explore how the different types of models 

would behave those are the case studies 1 through to 4 where multiple different types of 

models were tested with multiple different model types were tested with varying degrees of 

success and different methods to better create a base line to choose the proposed model to 

the 5th case study where the system proposed is tested against other systems to assert if the 

proposed system can compare to other systems, the full list of case studies with a small 

description, usage and type can be seen in table 3. 

The case studies 1 to 4 were isolated from each other to better assess each performance 

individually this allows for a simpler understanding of the strong points of each model type 

without removing the analysis of other models. 

The final case studies, case study 5 to 7, then compares the performance and assesses if the 

model can or not be generalized to multiple other buildings if they have similar inputs, this can 

then influence future iterations of this system. All case studies used the same simulation 

scenario described in section 5.1.2. 

Table 3 – Case study list 

Case 
study 

number 
Description Usage Type 

CS1 First attempt at creating a 
neural network model for 
prediction of the effects of an 
action on future observations 

model LSTM neural network 

CS2 Changed the model from CS1 
the LSTM model a time series 
model on the prediction 

model Time Series 

CS3 Studying the effects of 
standardization of input 
parameters in the time series 
model for this type of problem 

model Time Series 
Standardized 

CS4 Testing ensemble / regression 
models on the prediction of the 
effects of an action on future 
observations 

model Ensemble/regression 
models 

CS5 Test the best model with a 
Particle Swarm algorithm 
against other systems on 
running all the buildings 

Full system Ensemble 

CS6 Using previous data from CS5 
infer if it is possible to 
generalize the model 

Model generalization Ensemble 
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CS7 Model accuracy evolution over 
time using data obtained in CS5  

Model conversion Ensemble 
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6 Results 

6.1 Case studies 

In this chapter, we will evaluate the results of the different models that were tried, it also 

compares the current system to a base line and the SACRBC both available through CityLearn 

and the EnergAIze algorithm, further studies to evaluate the convergence, generalizability and 

accuracy over time of the chosen model for the evaluation against other system were also made. 

6.1.1 CS1 – LSTM network 

As discussed in 5.2.1 the first attempt was to use an LSTM network to predict the results of t+1. 

In this first case the LSTM was configured with an input layer, one middle layer that had a 

configurable parameter and a dense output layer. This case study uses the dataset defined in 

5.1.2 using only the first building to analyze the results. This LSTM was configured with the 

parameter presented in Table 4. 

Table 4 – Case study 1 parameter table 

Parameter Range Additional information 

Learning Rate 0,0000001 to 0.1 10x increments 

Number of units 5 to 40 5 units in increment 

Training Time 3000-time steps First 1000 ignored 

 

Table 5 – Case study 1 KPI information  

observation 95th percentile 
Maximum 

error 
Standard 
Deviation 

Learning 
rate 

Units in 
layer 

colling storage 
SOC 

+-23% +-141% 10% 0.1 25 

DHW storage 
SOC 

+-47% +-111% 15% 0.01 45 

Electrical storage 
SOC 

+-71% +-79% 25% 0.01 45 

Indoor 
temperature 

+-0.59ºC +-5.28ºC 0,25ºC 0.1 5 

Net Electricity 
consumption 

+-93.17 kWh +-157.51 kWh 33,18 
kWh 

0.1 5 

 

From Table 5 it is possible to extrapolate that the error prediction margins are too big to be an 

effective model, since 2 of the 3 batteries exhibit SOCs error superior to 100%, meaning that 

this system is predicting values well above or below any number that those observations might 
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have. The same applies to the indoor temperature, which has an error bigger than 5ºC. The max 

error of the Net Electricity consumption metric is also too big with highs on the 157.51KWh of 

error. 

The performance of this type of network was deemed not viable and by the time further testing 

was ready the call to switch to a time series approach was already taken, with errors in 

predicting the charge lever of a battery with a high level of error sometimes above 100% in 

error, the author also recognizes that an even earlier implementation without large 

experimentation did improve on the max error by simply limiting the max prediction by using 

the sigmoid activation function on the final layer but it did not improve the middle results. 

6.1.2 CS2 – Time series – non standardized 

As discussed before in 5.2.1 the second attempt was to use an LSTM timeseries network to 

predict the results to t+1, in this second case was a simple grid search with the input layer, three 

LSTM configurable layers one dense configurable layer and a dense output layer. This training 

was cut short because of the implementation of the standardized version of this algorithm. This 

case study used the dataset defined in 5.1.2 using only the first building to analyze the results 

The parameters of this training can be seen in table 6. 

Table 6 – Case study 2 parameter table 

Parameter Range Additional information 

Learning Rate 0.0001 to 0.1 10x increments 

Number of units 65 to 267 64 units in increment 

Training Time 6000-time steps First 2000 ignored 

 

Table 7 - Case study 2 KPI information 

observation 95th percentile 
Maximum 

error 
Standard 
Deviation 

Learning 
rate 

Units in 
layer 

colling storage 
SOC 

+-84% +-220% 29% 0.001 [129, 257, 
65, 65] 

DHW storage 
SOC 

+-86% +-368% 32% 0.001 [65, 129, 
65, 65] 

Electrical storage 
SOC 

+-86% +-354% 32% 0.001 [129, 257, 
65, 257] 

Indoor 
temperature 

+-8.17ºC +-11.03ºC 6.97 0.0001 [65, 65, 
65, 193] 

Net Electricity 
consumption 

+-111,89 kWh +-219,93 kWh 35,04 
kWh 

0.001 [129, 193, 
65, 257] 

 

As shown in table 7 this model proved unusable for the final project, these results were very 

bad, and it was quickly moved to a standardized time series model. The SOC error is too high to 

even consider for use since CS1 had better predictions all around and even it is worse prediction 
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on the SOCs being a maximum error of +-1.41 while the max error of this is +-2.2 at the best 

possible case. The indoor temperature is also bad with a 95th percentile in the +-8.17ºC in error 

which in this application is unusable. The net electricity consumption error is still high with +-

219.9KWh in max error. 

What was presented here does not mean that this type of model should not have further 

research as explained due to limitations in testing capability this models’ tests could not be 

finalized since the initial results were not satisfactory that the switch to a standardized input 

was made. 

6.1.3 CS3 – Time series – standardized 

The third attempt was to use an LSTM timeseries network like the previous case but 

standardized to predict the results to t+1, in this third case was a simple grid search with the 

input layer, three LSTM configurable layers one dense configurable layer and a dense output 

layer. This training was cut short because of the Ensemble/regression models implementation. 

Due to an error on the logic of how the data is handled only the batteries have the correct data 

to present. This case study used the dataset defined in 5.1.2 using only the first building to 

analyze the results The parameters used can be seen in table 8. 

 

Table 8 – Case study 3 parameter table 

Parameter Range Additional information 

Learning Rate 0.0001 to 0.1 10x increments 

Number of units 65 to 267 64 units in increment 

Training Time 6000-time steps First 2000 ignored 

 

Table 9 – Case study 3 prediction KPI table 

observation 95th percentile 
Maximum 

error 
Standard 
Deviation 

Learning 
rate 

Units in 
layer 

colling storage 
SOC 

+-53% +-60% 15% 0.0001 [193, 129, 
193, 129] 

DHW storage 
SOC 

+-56% +-68% 14% 0.0001 [129, 193, 
129, 257] 

Electrical storage 
SOC 

+-57% +-65% 17% 0.0001 [193. 257. 
129. 65] 

 
This case was not fully tested because after the bad early results another call was made to 

switch to ensemble and regression systems it did show some promise and further research 

should be done whether that is by increasing the number of layers or running the full battery 

of tests, both time series implementation had the problem that the system that was running 

the implementation could not be ran 24/7, the test case dose show promise. 
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As shown in table 9 using standardized values did improve the prediction but it was still not the 

best, there would be a loss of the granularity that would happen in the case of the Net Electricity 

consumption where the data returned had a very different meaning to the other values 

returned on the other case studies since the theoretical range would be from -infinite to 

+infinite. 

6.1.4 CS4 – Ensemble / regression systems 

The fourth attempt was to use an ensemble / regression system it went back to only having 1h 

of prediction time like CS1 and behaving similarly to CS1 in modularity terms. 

The systems tested alone can be seen in table 10 with additional information when needed: 

Table 10 – Regressor parameters list 

Regressor 
Learning rate (if applicable, 
if not present then it is the 

default value) 
Number of estimators 

RandomForestRegressor  100 to 300 step 100 

AdaBoostRegressor 1.0 100 to 300 step 100 

BaggingRegressor  100 to 300 step 100 

ExtraTreesRegressor  100 to 300 step 100 

GradientBoostingRegressor 0.1 100 to 300 step 100 

HistGradientBoostingRegressor 0.1  

 

The other regression methods tested were: 

LinearRegression, RidgeCV, ElasticNet, Lasso, ARDRegression, BayesianRidge, 

RANSACRegressor, PassiveAggressiveRegressor. All these regressors were also tested with all 

possible combinations between them by using the average of the sum of the results.  

It ran for 6000 iterations ignoring the first 2000 as training time. This case study used the dataset 

defined in 5.1.2 using only the first building to analyze the results 
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Table 11 – Case study 4 prediction KPI table 

observation 
95th 

percentile 
Maximum 

error 
Standard 
Deviation 

regressor 

colling storage 
SOC 

+-17% +-36% 5% ARDRegression 

DHW storage 
SOC 

+-17% +-27% 5% ARDRegression 

Electrical 
storage SOC 

+-42% +-54% 12% LinearRegression, 
RidgeCV, 
ARDRegression 

Indoor 
temperature 

+-0.18 ºC +-0.55 ºC 0.05ºC ARDRegression 

Net Electricity 
consumption 

+-112,59 
kWh 

+-237,08 
kWh 

35,62 
kWh 

ElasticNet 

 
This was the final model type that was tested, as shown in table 11 although the performance 

of the Net Electricity consumption value was the worse that it was tested, this type of model 

was the one that was chosen to be taken into the last test case mostly due to the battery and 

indoor temperature performance, since it had the best results in 4 out of the 5 predictions this 

model would be used in the final test. 

6.1.5 CS1 to CS4 Resume 

The Case studies 1 to 4 refer to the tests to access the effectiveness of different models to use, 

since the ensemble models were clearly the best in the SOC and indoor temperature prediction 

the ensemble and regression methods were chosen, the best Net Electricity consumption 

comes from the first try of a simple LSTM network, but due to the bad performance in the SOC 

prediction the choice of the ensemble and regression was chosen. 

To the effects of this thesis the choice for a single model type was made to streamline the 

development and test of the final solution, although the system was designed with modularity 

in mind, the simplicity of using only one model type and the reduction of problems in the final 

implementation saw that only ensemble and regression models were used. 

6.1.6  CS5 – Full system test and comparation to other systems 

As was discussed before the system ran the first 2000h using a rules system and after those 

2000h the system would start to run the optimization system. 

The prediction parameters and the regressor used was chosen the same through the same KPIs 

used to evaluate each regressor a full list of the parameter and the regressor used can be seen 

bellow on table 12. This case study used the dataset defined in 5.1.2 using all the buildings that 

are provided by the dataset to analyze the results. 
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Table 12 – Case study 5 prediction parameter and the regressor used. 

Prediction parameter Regressor used 

carbon_intensity ARDRegression 

dhw_storage_soc ARDRegression 

diffuse_solar_irradiance RidgeCV, ElasticNet, ARDRegression, 
PassiveAggressiveRegressor 

diffuse_solar_irradiance_predicted_6h LinearRegression, Lasso, ARDRegression, 
PassiveAggressiveRegressor 

diffuse_solar_irradiance_predicted_12h 
 

ElasticNet 

diffuse_solar_irradiance_predicted_24h Lasso 

direct_solar_irradiance LinearRegression, BayesianRidge, 
PassiveAggressiveRegressor 
 

direct_solar_irradiance_predicted_6h RidgeCV, BayesianRidge, 
PassiveAggressiveRegressor 
 

direct_solar_irradiance_predicted_12h LinearRegression, ElasticNet, Lasso, 
BayesianRidge 
 

direct_solar_irradiance_predicted_24h LinearRegression, ElasticNet, Lasso, 
BayesianRidge 

electrical_storage_soc LinearRegression, RidgeCV, 
ARDRegression 

indoor_dry_bulb_temperature ARDRegression 

indoor_relative_humidity Lasso 

net_electricity_consumption ElasticNet 

non_shiftable_load LinearRegression, ElasticNet, Lasso, 
ARDRegression, BayesianRidge, 
RANSACRegressor 

 

outdoor_dry_bulb_temperature Lasso, ARDRegression 

outdoor_dry_bulb_temperature_predicted_6h Lasso, ARDRegression 

outdoor_dry_bulb_temperature_predicted_12h Lasso, ARDRegression 

outdoor_dry_bulb_temperature_predicted_24h ARDRegression 

outdoor_relative_humidity ARDRegression 

outdoor_relative_humidity_predicted_6h LinearRegression, Lasso, ARDRegression, 
PassiveAggressiveRegressor 

outdoor_relative_humidity_predicted_12h ARDRegression 

outdoor_relative_humidity_predicted_24h RidgeCV, Lasso, ARDRegression, 
BayesianRidge, 
PassiveAggressiveRegressor 

solar_generation RidgeCV, Lasso, ARDRegression, 
BayesianRidge, 
PassiveAggressiveRegressor 
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The main 3 values that we are going to compare as specified will be the carbon_emissions_total, 

electricity_consumption_total and the zero_net_energy for the SACRBC and a baseline system 

given by the citylearn framework, and the system described on this thesis (HCMCAI). 

Color red is the worse on that building, yellow is the second worse, blue is the second best and 

green is the best of that building. 

Table 13 - carbon_emissions_total KPI evaluation per system 

System/ 
BaseLine SACRBC HCMCAI EnergAIze 

Building 

Building 1 1.22135 1.21826 1.09226 1.00311  

Building 2 1.16807 1.16508 1.06304 1.01673 

Building 3 1.08856 1.08731 1.04989 1.00012 

Building 4 1.39485 1.38985 1.17763  1.04160 

Building 5 1.12423 1.12338 1.07219  1.01806 

Building 6 1.06824 1.06872 1.06281 1.05141 

Building 7 1.04387 1.04413 1.04150 1.03259 

Building 8 1.07685 1.07638 1.07650 1.07021 

Building 9 1.06937 1.06888 1.06204 1.01101 

 

Table 14 - electricity_consumption_total KPI evaluation per system 

System/ 
BaseLine SACRBC HCMCAI EnergAIze 

Building 

Building 1 1.23016 1.22716 1.09244 1.00318 

Building 2 1.17900 1.17632 1.06454 1.01691 

Building 3 1.09751 1.09643 1.05244 1.00011 

Building 4 1.42922 1.42224 1.18686 1.04329 

Building 5 1.12610 1.12594 1.07175  1.01799 

Building 6 1.06890 1.06941 1.06338 1.05207 

Building 7 1.04478 1.04495 1.04175 1.03279 

Building 8 1.07887 1.07818 1.07756 1.07116 

Building 9 1.07123 1.07063 1.06289  1.01100 
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Table 15 - zero_net_energy KPI evaluation per system 

System/ 
BaseLine SACRBC HCMCAI EnergAIze 

Building 

Building 1 1.07693 1.07655 1.05367 1.00354 

Building 2 1.07614 1.07571 1.04773 1.01683 

Building 3 1.03843 1.03842 1.03378 1.00003 

Building 4 1.11041 1.10792 1.08865 1.05802 

Building 5 1.07860 1.07896 1.05814 1.01826 

Building 6 1.06404 1.06424 1.06232 1.05228 

Building 7 1.04436 1.04446 1.04159 1.03279 

Building 8 1.07559 1.07505 1.07671 1.07116 

Building 9 1.06437 1.06411 1.06008 1.01100 

 

From the KPIs used the system had a good performance comparing to the baseline and the 

SACRBC although not being fully optimal it did greatly reduce the electricity consumption as 

shown in table 14 and carbon emissions listed in table 13 and increasing the self-reliance of the 

system by having lower zero net energy consumption as shown in table 15. Although further 

tests should be carried out this allows the conclusion that the MPC system might be a viable 

alternative to the more traditionally complex neural network alternatives. 

The EnergAIze had the best performance, this can be partially explained due to the algorithms 

need to pass once through the entire dataset to learn and the second time is when it runs the 

optimization while all the other algorithms can run at the first pass. 

6.1.7 CS 6 – Model Generalization on other buildings 

The following tables 16 and 17 present the generalization comparison of the buildings through 

the KPIs used to choose the model algorithms. 

This can give a better idea if the same model can be used for multiple houses or if each house 

needs it is specific prediction model. This data was obtained by analyzing the data extracted 

from the case study 5. 
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Table 16 - 95th percentile error of predictions 

Building 
colling 
storage 

Domestic hot 
water storage 

Electrical 
storage 

Indoor temperature 
Net Electricity 
consumption 

Building 1 78% 27% 102% 0.35 ºC 101.66 kWh 

Building 2 49% 15% 71% 1.25 ºC 24.34 kWh 

Building 3 40% X* 62% 0.28 ºC 41.11 kWh 

Building 4 65% X* 33% 0.45 ºC 49.97 kWh 

Building 5 27% 42% 146% 0.06 ºC 28.61 kWh 

Building 6 166% 16% 32% 0.03 ºC 20.90 kWh 

Building 7 43% 23% 93% 0.03 ºC 22.01 kWh 

Building 8 25% 2% 69% 0.03 ºC 18.99 kWh 

Building 9 76% 3% 164% 0.04 ºC 28.51 kWh 

*Domestic hot water storage does not exist for building 3 and 4 

 

Table 17 - Max error of predictions 

Building 
colling 
storage 

Domestic hot 
water storage 

Electrical 
storage Indoor temperature 

Net Electricity 
consumption 

Building 1 142% 67% 190% 0.99ºC 253.01 kWh 

Building 2 105% 40% 145% 3.54 ºC 70.79 kWh 

Building 3 107% X* 111% 0.64 ºC 96.00 kWh 

Building 4 118% X* 67% 1.10 ºC 112.32 kWh 

Building 5 66% 79% 279% 0.12 ºC 72.92 kWh 

Building 6 329% 37% 71% 0.07 ºC 56.82 kWh 

Building 7 88% 51% 175% 0.07 ºC 68.91 kWh 

Building 8 58% 19% 158% 0.82 ºC 54.24 kWh 

Building 9 139% 36% 336% 0.12 ºC 70.34 kWh 

*Domestic hot water storage does not exist for building 3 and 4 

From the original test in CS4 there is a clear reduction in accuracy, the SOCs and a large variance 

on the accuracy from building to building with some buildings having better prediction than the 

CS4 and others a lot worse, this means that the system cannot be generalized to other buildings, 

one metric that improved a large amount was the Net Electricity consumption where although 

the first building prediction was around the same, the other buildings prediction improved by a 

large margin, the indoor temperature had a similar performance to the SOC with a large degree 

of change in between buildings thus this one cannot also be generalized. 
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6.1.8 CS7 – Model accuracy evolution 

In this Case study we will evaluate how the model behaves, and the prediction accuracy changes 

over time. 

This can give a better insight into how the system will behave on the long term and give a clearer 

idea on how much the system need to be updated to keep a good prediction. 

The left side metric represents the prediction error while the bottom metric divides the time 

that the system worked in 8 equal parts this is the same for all tables. The graphs of the SOCs 

are the error of prediction in decimal form, the temperature is in ºC, and the net electricity 

consumption is in kWh. This data was obtained by analyzing the data extracted from the case 

study 5. 

 

Fig 14 – cooling storage SOC building box plot 

 

Fig 15 – domestic hot water SOC building box plot 
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Fig 16 – Electrical storage SOC building box plot 

 

Fig 17 – indoor dry bulb temperature building box plot. 
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Fig 18 – net electricity consumption building box plot 

From Fig 10 to 14 we can see the error of the prediction over time divided in 8 intervals through 

the data set removing the first 2000 values since the optimization is not yet running and the 

model is not yet trained those values were removed, through these set of images we can deduce 

that the model after the initial training, there is not a noticeable increase in getting a better 

prediction, this shows that the model already achieves the best prediction after a small time 

frame. 

This indicates that the training timings can be increased in this situation, of note that certain 

observations like the net electricity consumption can be highly volatile, like the addiction of an 

electric car will change how the prediction is handled, same goes for the indoor temperature, 

if the user decides do switch the cooling unit that means that the current prediction will lose 

accuracy, but how to deal with these changes in the environment are not researched on this 

thesis. 
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7 Conclusion 

 

As the world inches closer to a full electric future, the need for a system to better manage the 

energy needs is required, this thesis focused on designing a system to schedule energy 

consumption of different devices based the usage of Model Predictive Control algorithms to 

reduce costs, reduce the power consumption from the grid, increase self-consumption and 

consequently reduce the overall energy footprint. This system aimed to be user controlled, if 

the user for some reason wants to change the objective of optimization, that can be done 

without a large training time or a big decrease in quality since it only affects how the actions 

are optimized and not the model itself that never changes due to user input. 

This work presented the results from the simulation of multiple buildings, using the citylearn 

platform with the 2021 challenge dataset. This dataset contained different types of home 

systems heat pumps, air conditioning, PV panels, etc. 

For the model part of the MPC algorithm we tried multiple models, like a simple LSTM model, 

two time series models, one with standardized inputs and one without and, finally, it was tested 

a mix of ensemble and regression methos. The latter was chosen to be the one used for the 

comparisons due to its better performance on the prediction of the battery SOCs and the indoor 

temperature. 

For the prediction the algorithm to find the best solution a particle swarm algorithm was used 

since it converges more rapidly into the area of the optimal solution. 

The comparation to other systems wielded the expected results, being a better than the simpler 

models provided by the CityLearn platform those being the BaseLine and the SACRBC, but worse 

than a fully optimal system like EnergAIze. 

The model converged quickly into the best prediction it could make and no improvement was 

made with the increase in data, the model cannot also be generalized due to high variance 

between buildings. 

7.1 Accomplished Objectives 

At the start of the thesis 6 objectives were defined, which we are now going to Analise case by 

case. 

SO1 -  Investigate the current state-of-the-art on Renewable Energy Sources, Energy 

communities and predictive control systems. – this was fully done as the background 

and state of art chapter. 
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SO2 -  Investigate the current state-of-the-art of energy flexibility management methods of 

Model Predictive Control and evaluate their applicability. – this again was done at the 

background and state of art chapter. 

SO3 -  Design a decentralized multi-agent Model Predictive Control approach that manages 

and optimizes flexible energy assets considering individual objectives. – this was 

achieved as we can see that the system was designed to take in consideration the 

individual objective of a specific building, 

SO4 -  Test, tune and optimize a solution, use different optimization objectives and EC 

scenarios, evaluating its performance, scalability, and adaptability to real-world 

scenarios. – The case studies 1 to 4, 6 and 7 all make this evaluation in the end the 

regression methods were chosen due to the better performance in the SOC prediction, 

the models have trouble being generalized and the system converges into it is possible 

accuracy early in the live span without reducing accuracy with further time passing, 

SO5 -  Benchmark the proposed solution against other systems. – This was achieved in the 

case study 6 where this system was compared against a baseline, SACRBC and 

EnergAIze. 

SO6 -  Evaluate the tests with regards to environmental, financial and prosumer engagement. 

This was achieved by optimizing the amount of energy used and reducing the amount 

of electricity coming from the grid this makes so the amount of pollution lower and the 

price of electricity also lower, the prosumer engagement is achieved by managing the 

batteries and photovoltaic panels. 

In this thesis all the primary goals were achieved resulting in a system that had the expected 

performance, unfortunately 2 stretch goals of testing the impact of other optimization systems, 

and implementing electric vehicles were not achieved this gives space for future work in this 

area.  

7.2 Limitations and Future Work 

The current limitations are mostly due to the bad implementation of some modules like the 

input generation module. This module would need to be reworked to be easier to read, 

although it can be used as is a simplified and easier to modify version should be implemented. 

Further work should mostly be focused on 2 main points, testing and improvement of the model 

and optimization algorithm, and in the implementation of a central system.  

A better model should improve on the reliability of the future prediction thus increasing the 

number of hours the system can optimize which would increase performance. The evaluation  

of more optimization algorithms is also  a good way to increase performance, the author would 

like to recognize also  that this specific use case can make use of a particular part of the 

optimization algorithms, some work better at optimizing to a general area of the answer space 

while others  work much better at   optimizing a small area of search, it is possible to divide the 

search time into 2 and use 2 different algorithms to find a more optimal solution. 
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A centralized system, that on this current specification with user freedom and a system that 

highly tries to obfuscate and reduce the amount of data that is sent to a hypothetical central 

system due to security concerns, can prove tough and not optimal but a system that implements 

the 3.1 priority rating is something that will improve the resilience of the electric grid and help 

in adverse scenarios. 

Finally, the implementation and test of the impact of electric vehicles is also a good future work 

as discussed before electric vehicles are becoming increasingly more common and the owners 

might want to charge their vehicle at home, this will have an impact on the performance of the 

MPC system.
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