
The Role of a Microservice Architecture on
cybersecurity and operational resilience in
critical systems

FRANCISCO PINTO SEBASTIÃO
Outubro de 2023

The Role of a Microservice Architecture on

cybersecurity and operational resilience in critical

systems

Francisco Pinto Sebastião

Dissertation to obtain the Master’s degree in Informatics Engineering,

Specialization in Software Engineering

Advisor: Isabel Praça

Co-advisor: Orlando Sousa

Porto, 2023

ii

Francisco Pinto Sebastião iii

Dedication

To my family and those who believed in me and supported me allowing me to reach where I am

today, to coffee, my pets, and the music that accompanied me during this dissertation.

iv

Francisco Pinto Sebastião v

Abstract

Critical systems are characterized by their high degree of intolerance to threats, in other words,

their high level of resilience, because depending on the context in which the system is inserted,

the slightest failure could imply significant damage, whether in economic terms, or loss of

reputation, of information, of infrastructure, of the environment, or human life. The security of

such systems is traditionally associated with legacy infrastructures and data centers that are

monolithic, which translates into increasingly high evolution and protection challenges.

In the current context of rapid transformation where the variety of threats to systems has been

consistently increasing, this dissertation aims to carry out a compatibility study of the

microservice architecture, which is denoted by its characteristics such as resilience, scalability,

modifiability and technological heterogeneity, being flexible in structural adaptations, and in

rapidly evolving and highly complex settings, making it suited for agile environments. It also

explores what response artificial intelligence, more specifically machine learning, can provide

in a context of security and monitorability when combined with a simple banking system that

adopts the microservice architecture.

Keywords: Microservices architecture; Critical systems; Cybersecurity; Operational resilience;

Architectural evaluation; Machine learning.

vi

Francisco Pinto Sebastião vii

Resumo

Os sistemas críticos são caracterizados pelo seu elevado grau de intolerância às ameaças, por

outras palavras, o seu alto nível de resiliência, pois dependendo do contexto onde se insere o

sistema, a mínima falha poderá implicar danos significativos, seja em termos económicos, de

perda de reputação, de informação, de infraestrutura, de ambiente, ou de vida humana. A

segurança informática de tais sistemas está tradicionalmente associada a infraestruturas e data

centers legacy, ou seja, de natureza monolítica, o que se traduz em desafios de evolução e

proteção cada vez mais elevados.

No contexto atual de rápida transformação, onde as variedades de ameaças aos sistemas têm

vindo consistentemente a aumentar, esta dissertação visa realizar um estudo de

compatibilidade da arquitetura de microserviços, que se denota pelas suas caraterísticas tais

como a resiliência, escalabilidade, modificabilidade e heterogeneidade tecnológica, sendo

flexível em adaptações estruturais, e em cenários de rápida evolução e elevada complexidade,

tornando-a adequada a ambientes ágeis. Explora também a resposta que a inteligência artificial,

mais concretamente, machine learning, pode dar num contexto de segurança e

monitorabilidade quando combinado com um simples sistema bancário que adota uma

arquitetura de microserviços.

Palavras-chave: Arquitetura de microserviços; Sistemas críticos; Cibersegurança; Resiliência

operacional; Avaliação arquitetural; Machine learning.

viii

Francisco Pinto Sebastião ix

Acknowledgments

I want to firstly thank my family, mainly my parents, who always believed in me, and pushed

me, and it is thanks to them that I can find myself in this position today.

Secondly, my supervisors, for their support and availability during the elaboration of this

dissertation.

Finally, my friends, some of whom provided great support during this important phase of my

personal and professional life.

x

Francisco Pinto Sebastião xi

Table of Contents

1 Introduction .. 1

1.1 Context .. 1
1.1.1 Cybersecurity .. 1
1.1.2 Artificial intelligence ... 1
1.1.3 Operational resilience.. 2
1.1.4 Critical systems ... 3
1.1.5 Microservices .. 4

1.2 Problem .. 7

1.3 Objectives ... 7

1.4 Planning .. 7

1.5 Document structure .. 8

2 State of the art ... 11

2.1 Relevant studies and papers ... 11
2.1.1 Evolution of research over the years .. 11
2.1.2 Transition of critical systems into the microservice architecture............... 13
2.1.3 Proposal of cybersecurity practices for microservices 15
2.1.4 Usage of artificial intelligence in microservices 17
2.1.5 Threat detection and/or labeling in cybersecurity................................ 22

2.2 Comparison of the gathered research .. 23
2.2.1 Conclusions ... 24

2.3 Existing technologies and patterns .. 25
2.3.1 Technologies ... 25
2.3.2 Patterns ... 27

2.4 Summary .. 29

3 Analysis ... 31

3.1 Concepts and activities ... 31
3.1.1 Core context.. 31
3.1.2 User context .. 33
3.1.3 Transfer context ... 34
3.1.4 Payment context ... 35
3.1.5 Domain model .. 36

3.2 Processes and stakeholders .. 36

3.3 Use cases ... 39

3.4 Summary .. 39

4 Design ... 41

4.1 Level 1: Context ... 42

xii

4.2 Level 2: Containers .. 43

4.3 Level 3: Components .. 47
4.3.1 Core Service .. 48
4.3.2 Other services .. 51

4.4 Level 4: Code .. 53
4.4.1 Transaction-related components of the Core Service 54
4.4.2 Transfer Service components .. 57

4.5 Database .. 59
4.5.1 Core Service .. 59
4.5.2 Other services .. 61

4.6 Summary .. 62

5 Technologies.. 63

5.1 Adopted technologies ... 63

5.2 System’s services .. 64
5.2.1 .NET ... 64
5.2.2 C# .. 64
5.2.3 Serilog ... 64
5.2.4 Elastic Common Schema .. 65
5.2.5 Entity Framework Core ... 65
5.2.6 Steeltoe ... 65
5.2.7 Swashbuckle .. 65
5.2.8 Elastic APM ... 66

5.3 API Gateway .. 67
5.3.1 Service discovery .. 67

5.4 Database .. 70
5.4.1 Microsoft SQL Server .. 70
5.4.2 PostgreSQL Server ... 70
5.4.3 Elasticsearch ... 70

5.5 Logging, monitoring, tracing, and observability .. 70
5.5.1 Kibana ... 71
5.5.2 APM Server ... 72
5.5.3 Metricbeat .. 73
5.5.4 Heartbeat ... 73

5.6 Summary .. 74

6 Implementation .. 75

6.1 Particular situations ... 75
6.1.1 Service Discovery .. 75
6.1.2 Logging, tracing, and metrics collection ... 79
6.1.3 Machine learning job creation ... 89

6.2 Infrastructure setup ... 98
6.2.1 System .. 99
6.2.2 Elastic stack ... 102

Francisco Pinto Sebastião xiii

6.3 Summary ... 108

7 Evaluation ... 109

7.1 Investigation hypothesis ... 109

7.2 Indicators and information sources .. 110

7.3 Goals, Questions, Metrics .. 110

7.4 Tests .. 112
7.4.1 Unit tests .. 114
7.4.2 Integration tests .. 119

7.5 Continuous Integration and Continuous Deployment/Development 122

7.6 Experimentation setup ... 128

7.7 Results ... 129
7.7.1 Availability ... 129
7.7.2 Performance ... 132
7.7.3 Scalability .. 132
7.7.4 Monitorability ... 133
7.7.5 Security .. 133

7.8 Summary ... 136

8 Conclusions .. 139

8.1 Objectives achieved .. 139

8.2 Limitations... 140

8.3 Future work ... 140

8.4 Final appreciation .. 140

References ... 143

Annex A ... 154

A.1 Value analysis ... 154
A.1.1 New Concept Development Model .. 154
A.1.2 Value ... 156
A.1.3 Functional Analysis (FAST) ... 158

Annex B ... 159

B.1 Results per query on B-On and ScienceDirect ... 159

B.2 Container level process views with more outcomes 161

B.3 Cloud Run additional configuration options ... 163

xiv

Table of Figures

Figure 1 - The stages of cyber resilience ... 3

Figure 2 - Example of a microservice architecture [16] .. 5

Figure 3 - Number of results presented by B-On and ScienceDirect on the search using all queries

 .. 12

Figure 4 - Amazon OpenSearch workflow [40] ... 25

Figure 5 – Example architecture of a real-time anomaly detection solution in Google Cloud [44]

 .. 26

Figure 6 - Circuit breaker states [47] .. 27

Figure 7 - Core context portion of the domain model.. 32

Figure 8 - User context portion of the domain model .. 33

Figure 9 - Transfer context portion of the domain model .. 34

Figure 10 - Payment context portion of the domain model ... 35

Figure 11 - Domain model .. 36

Figure 12 - Activity diagram describing process 1 .. 37

Figure 13 - Activity diagram describing process 2 .. 37

Figure 14 - Activity diagram describing process 3 .. 38

Figure 15 - Activity diagram describing processes 4 through 6 .. 38

Figure 16 - Use case diagram .. 39

Figure 17 - Logical view of the context level of the system ... 42

Figure 18 - Logical view of the container level of the system .. 43

Figure 19 - Logical view of the container level of the elastic stack .. 44

Figure 20 - Physical view of the container level of the system .. 45

Figure 21 - Process view of the container level of the system regarding the happy path of

execution of a fund transfer ... 46

Figure 22 - Logical view of the component level of the Core Service container 48

Figure 23 - Process view of the component level of the Core Service regarding fetching user

information ... 49

Figure 24 - Logical view of the component level of the Payment Service container 52

Figure 25 - Process view of the container level of the Payment Service container regarding

payment execution with only the happy path.. 52

Figure 26 - Class diagram of the class level referring to the Transaction-related components of

the Core Service container ... 54

Figure 27 - Class diagram of the class level of the Transfer Service container components 57

Figure 28 - Entity-Relationship model of the Core Service container .. 59

Figure 29 - Entity-Relationship model of the User Service, Transfer Service, and Payment Service

containers ... 61

Figure 30 - Example of Swagger UI page .. 66

Figure 31 - Example of an Ocelot API Gateway configuration with Consul [86] 67

Figure 32 - Example of a system with client-side service discovery [90] 68

Figure 33 - Example of a system with server-side service discovery [90] 69

xvi

Figure 34 - Consul UI ... 69

Figure 35 - Example of searching data through analytics in Kibana ... 71

Figure 36 - Example of consulting Elastic Observability overview on Kibana............................. 72

Figure 37 - Example of metrics collected into a dashboard on Kibana 73

Figure 38 - Example of uptime monitoring with information collected by Heartbeat on Kibana

 ... 74

Figure 39 - Consulting User Service logs in the Discover feature on Kibana 82

Figure 40 – User service APM overview tab ... 84

Figure 41 - User service APM transactions tab ... 84

Figure 42 - User service APM metrics tab ... 85

Figure 43 - User service APM service map tab ... 85

Figure 44 - Metrics Inventory overview of all the API Gateway instances CPU usage 87

Figure 45 - Metrics Inventory overview of a selected API Gateway container metrics 88

Figure 46 - Metrics Explorer overview of all the API Gateway instances average CPU usage ... 88

Figure 47 - Anomaly detection option in the Services view in the APM section of Observability

 ... 89

Figure 48 - Anomaly detection tab with the created ML job .. 90

Figure 49 - Anomaly detection job creation options .. 91

Figure 50 - Selection of time range for collected data for analysis in anomaly detection job

creation ... 92

Figure 51 - Selection of field for analysis in anomaly detection job creation 92

Figure 52 - Job details configuration of in anomaly detection job creation 93

Figure 53 - Job validation in the anomaly detection job creation .. 93

Figure 54 - Job summary in the anomaly detection job creation ... 94

Figure 55 - Data frame analytics job creation ... 95

Figure 56 - Data frame analytics job creation included fields and training segment 96

Figure 57 - Data frame analytics job creation additional options segment 97

Figure 58 - Data frame analytics job creation job details segment .. 97

Figure 59 - Data frame analytics job creation validation segment ... 98

Figure 60 - Data frame job creation create segment .. 98

Figure 61 - Test Pyramid [108] .. 113

Figure 62 – CI/CD workflow [122] ... 122

Figure – Cloud Build trigger setup in relation to the name, region, event, and source 124

Figure – Cloud Build trigger setup in relation to the configuration and service account 125

Figure 65 – Cloud Build build details after pipeline execution ... 126

Figure 66 – Cloud Run service configuration .. 126

Figure 67 – Cloud Run service creation... 127

Figure 68 – Deployed service on Cloud Run ... 128

Figure 69 - Uptime of the User Service during the testing period .. 130

Figure 70 - Transaction metrics of the User Service during the testing period 130

Figure 71 - Analysis of dependent libraries of the Core Service solution 134

Figure 72 - Detected anomalies in transactions by the APM ML job 135

Figure 73 - Detected anomalies in log count and ingestion rate by the logs ML job 135

Francisco Pinto Sebastião xvii

Figure - The New Concept Development model.. 154

Figure - FAST diagram for this dissertation .. 158

Figure 76 - Number of results presented by B-On and ScienceDirect using the query

“microservices operational resilience OR microservices resilience”.. 159

Figure 77 - Number of results presented by B-On and ScienceDirect using the query

“microservices cybersecurity OR microservices cyber security” .. 160

Figure 78 - Number of results presented by B-On and ScienceDirect using the query

“microservices artificial intelligence” ... 160

Figure 79 - Number of results presented by B-On and ScienceDirect using the query “artificial

intelligence cybersecurity OR artificial intelligence cyber security” .. 160

Figure 80 - Process view of the container level of the system regarding the execution of a fund

transfer with all possible outcomes.. 161

Figure 81 - Process view of the container level of the Payment Service container regarding

payment execution with all paths .. 162

Figure 82 – Cloud Run container options regarding general and capacity options 163

Figure 83 – Cloud Run container options regarding execution environment, environment

variables, secrets, health checks, and cloud SQL connections ... 164

Figure 84 – Cloud Run network options ... 165

Figure 85 – Cloud Run security options .. 165

xviii

Table of Tables

Table 1 - Types of Critical Systems [11] .. 4

Table 2 - Conditions for inclusion/exclusion criteria .. 12

Table 3 - Summary of papers on the transition of critical systems into the microservice

architecture... 13

Table 4 – Comparison of papers on the proposal of cybersecurity practices in microservices . 15

Table 5 - Comparison of papers on the usage of artificial intelligence in microservices 17

Table 6 – Comparison of papers on threat detection and/or labeling in cybersecurity 22

Table 7 - Comparison of researched papers in the aspects of this dissertation 23

Table 8 - Types of Machine Learning in Elastic [45] ... 26

Table 9 - Adopted technologies .. 63

Table 10 - Metrics by quality attributes related to resilience [105], [106] 110

Table 11 - Metrics by quality attributes related to security [106], [107] 112

Table 12- Goals, questions, metrics .. 112

Table 13 - Usage frequency of each microservice .. 132

Table 14 - Evaluation results ... 137

Table 15 - Summary of objectives... 139

xx

Table of Snippets

Snippet 1 - Consul configuration on the User Service’s appsettings file 76

Snippet 2 - Service Discovery set up on the User Service's Program class 77

Snippet 3 – Implementation of discovery client and handler to interact with the core service 78

Snippet 4 - Serilog configuration on host builder ... 80

Snippet 5 - Elastic APM agent configuration in the appsettings file .. 82

Snippet 6 - Elastic APM agent usage in the Startup class ... 83

Snippet 7 - Metricbeat.yml file ... 86

Snippet 8 - Dockerfile build environment restore segment ... 99

Snippet 9 - Dockerfile build environment build segment... 100

Snippet 10 - Dockerfile runtime environment entry-point segment 100

Snippet 11 - Docker-compose file ... 102

Snippet 12 - Elasticsearch YAML file ... 103

Snippet 13 - Kibana YAML file ... 103

Snippet 14 - APM Server YAML file ... 104

Snippet 15 - Partial Heartbeat YAML file .. 105

Snippet 16 - Elasticsearch Dockerfile .. 105

Snippet 17 – Docker-compose network and volume configuration ... 106

Snippet 18 - Elasticsearch configuration in the docker-compose file 106

Snippet 19 - Metricbeat service configuration on the docker-compose file............................ 107

Snippet 20 - Kibana configuration on the docker-compose file ... 108

Snippet 21 - Example unit test of the debit functionality of a bank account in C# 114

Snippet 22 - Setup of the UserControllerTests class .. 116

Snippet 23 - Unit test that validates a specific behavior of the UserController class 117

Snippet 24 - Unit test that validates a specific behavior of the UserService class 118

Snippet 25 - Unit test that validates a specific behavior of the UserMapper class 119

Snippet 26 - Partial implementation of the class fixture developed for the UserRepository

integration tests .. 120

Snippet 27 - Pair of integration tests of the UserRepository class ... 121

Snippet 28 - Examples of usage of Vegeta.. 128

Snippet 29 - Quality of Service options for the circuit breaker feature 131

Snippet 30 - Adding Polly to the services ... 131

Snippet 31 - Authentication and Authorization configuration ... 136

Snippet 32 - Usage of the authorize annotation in an endpoint .. 136

xxii Francisco Pinto Sebastião

Acronyms

ACM Association for Computing Machinery

AI Artificial Intelligence

AL Autonomous Learner

ANN Artificial Neural Network

AS Architectural Style

AWS Amazon Web Services

CI Critical Infrastructure

CI/CD Continuous Integration and Continuous Delivery/Deployment

CR Consistency Rate

CVM Containers of Virtual Machines

DBN Deep Believe Network

DCRNN Diffusion Convolutional Recurrent Neural Network

DDD Domain-Driven Design

DDoS Distributed Denial-of-Service

DL Deep Learning

FAST Functional Analysis System Technique

FFNN Feed-Forward Neural Network

FX Foreign Exchange

GAN Generative Adversarial Network

GCNN Graph Convolutional Neural Network

GCP Google Cloud Platform

GQM Goal Questions Metrics

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IoC Inversion of Control

xxiv Francisco Pinto Sebastião

IoT Internet of Things

KNN K-Nearest-Neighbors

LSTM Long-Short-Term Memory

MCI Microservice-based Critical Infrastructure

MIL Microservices Integration Layer

ML Machine Learning

MLaaS Machine Learning-as-a-Service

OO Object-Oriented

ORM Object-Relational Mapping

QA Quality Attribute

R&D Research and Development

RF Random Forest

RNN Recurrent Neural Network

RQ Research Question

SLA Service Level Agreements

SMR Systematic Mapping Review

SVM Support Vector Machine

Francisco Pinto Sebastião 1

1 Introduction

This chapter aims to present the context, problem, and objectives associated with the

development of this dissertation, as well as display the planning and the overall document

structure.

1.1 Context

This section presents the important aspects inherent to this dissertation. Those are the aspects

of cybersecurity, artificial intelligence (AI), operational resilience, and microservice architecture.

1.1.1 Cybersecurity

Cybersecurity is the art of protecting networks, devices, and data from unauthorized access or

criminal use and the practice of ensuring confidentiality, integrity, and availability of

information [1].

It’s important since smartphones, computers, and the internet are now such a fundamental

part of modern life, that it's difficult to imagine how society would function without them. From

online banking and shopping, to email and social media, it's more important than ever to take

steps that can prevent cyber criminals from getting hold of our accounts, data, and devices [2].

1.1.2 Artificial intelligence

In its simplest form, AI is a field that combines computer science and robust datasets to enable

problem-solving [3]. It encompasses two disciplines that are frequently mentioned with it:

• Machine Learning (ML): ML is a subfield of artificial intelligence, which is broadly defined

as the capability of a machine to imitate intelligent human behavior [4]. It uses algorithms

2 Francisco Pinto Sebastião

to parse data, learn from that data, and make informed decisions based on what it has

learned [5];

• Deep Learning (DL): DL is a subfield of machine learning that structures algorithms in layers

to create an Artificial Neural Network (ANN) that can learn and make intelligent decisions

on its own [5]. DL is what powers the most human-like AI.

In the context of cybersecurity, AI is an interesting resource to be employed since it can be

leveraged in multiple manners such as threat detection, classification, and blocking to have a

higher degree of security in networks and services. It has the possibility of preventing new

attacks with the usage of autonomous systems and learning patterns [6].

1.1.3 Operational resilience

Operational resilience is the ability to identify and protect from threats and potential failures,

respond and adapt to, as well as recover and learn from disruptive events to minimize their

impact on the delivery of critical operations through disruption [7].

The term cyber resilience refers to the ability of systems to resist and recover from or adapt to

an adverse occurrence is used to refer to operational resilience of systems [8].

Cyber resilience is important due to its ability to restore a system’s functionality after an attack

directed at a broad range of systems, such as critical infrastructures. Cyberattacks on water

supplies, energy and communication networks, and healthcare facilities bring significant

consequences [9]. For example, a ransomware attack on a health service organization reduced

the organization's data handling methods to be manual for a significant amount of time [10].

[9] affirms that “Such attacks can produce massive damage to the economic well-being of an

organization and to our broader society, and even endanger human lives.”

When such attacks occur, the systems absorb the impact, and their functionality begins to

degrade. Then, for the systems to bounce back to normalcy, mechanisms and/or processes are

engaged to absorb the negative impacts so that the system’s functionality can be recovered.

Francisco Pinto Sebastião 3

The stages of cyber resilience are presented in Figure 1 [9].

Figure 1 - The stages of cyber resilience

From what can be observed, cyber resilience is focused on recovery either partial or complete.

In some cases, it could involve adaptations to improve functionality or resilience to future

attacks. It will also depend on the aspects of the systems (e.g., design, controls, anticipation)

before an attack occurs [9].

Ultimately, the assessment of cyber resilience begins with acknowledging the inevitability of

attacks. When systems are affected, their functionality is degraded, and the focus is on the

speed of recovery [9].

1.1.4 Critical systems

According to [11] in their study, “Critical systems are those in which a failure or malfunction

could cause considerable negative effects.” They elaborate further by adding that critical

systems “[…] may have strict requirements for security and safety, to protect the user or others.”

Recently, the Industry, Research and Energy committee of the European Parliament identified

that due to the coronavirus pandemic an unforeseen acceleration in digital transformation took

place in societies around the world. This means that in addition to the traditional critical sectors

(e.g., energy, water plants, hospitals, etc.), other sectors outside this category began being

identified as critical (e.g., e-commerce, e-banking, etc.) due to the growth in dependence of

these systems by societies, meaning that the opportunities in cyber-crimes (i.e., cyber-attacks)

for malicious authors increased in exponentially as well [12].

Four types of critical systems are identified, as presented in Table 1.

4 Francisco Pinto Sebastião

Table 1 - Types of Critical Systems [11]

Type of
Critical

Implication for Failure

Safety-
Critical

May lead to loss of life, serious personal injury, or damage to the natural
environment.

Mission-
Critical

May lead to an inability to complete the overall system or project objectives
(e.g., loss of critical infrastructure or data).

Business-
Critical

May lead to significant tangible or intangible economic costs (e.g., loss of
business or damage to reputation).

Security-
Critical

May lead to loss of sensitive data through theft or accidental loss.

The impact of a critical system, where a failure or malfunction occurs, will depend on the setting

or context where it is inserted (i.e., Type of critical system). For example, in an e-commerce

setting, the failure of such systems will always have an impact on the company’s financials, at

minimum, but could be elevated to the closure of the company. The cost of this impact will

depend on the system that is down:

• A website and/or ordering system being unavailable for several hours could result in the

loss of business to a different competitor (i.e., Business-Critical).

• Unauthorized/Illegitimate access to the customer information system could result in the

loss of sensitive data of the customers (i.e., Security-Critical).

• Loss or corruption of data, power shortages, faulty hardware, or environmental disasters in

the data centers would lead to the cease of functions of the overall company (i.e., Mission-

Critical).

On the other hand, in a medical context, any type of failure in critical systems (e.g., Pacemakers,

defibrillator machines, robotic surgery machines) could mean the loss of life (i.e., Safety-Critical).

1.1.5 Microservices

Microservices, or microservice architecture, according to [13] is an architectural style inspired

by service-oriented architecture in combination with the old Unix principle of “do one thing and

do it well.” They are supposed to be lightweight, flexible, and easy to get started with, fitting in

with modern software engineering trends such as Agile development, Domain Driven Design

(DDD), cloud, containerization, and virtualization.

There are numerous ways to describe microservices, but the two most common are the

following:

1. [14] defined microservices as small autonomous services built around the principles of

Model (services) around business concepts, adopt a culture of automation, hide internal

Francisco Pinto Sebastião 5

implementation details, decentralize all things, isolate failure, and make services

independently deployable and highly observable.

2. [15] defined microservices as “an approach to developing a single application as a suite of

small services, each running in its process and communicating with lightweight mechanisms,

often an HTTP resource API. These services are built around business capabilities and

independently deployable by fully automated deployment machinery. There is a bare

minimum of centralized management of these services, which may be written in different

programming languages and use different data storage technologies.”

Figure 2 - Example of a microservice architecture [16]

Looking at Figure 2, we can observe an example of a simple microservice architecture of an e-

commerce system. Its backend is composed of three microservices (Account, Inventory, and

Shipping), each with its database, and on the front-end side, there is a web application and

mobile application. The web application can be accessed through a browser and communicates

directly with every single microservice through their respective REST API [17], while the mobile

application communicates with an API Gateway [18] that will then call the necessary

microservices to complete its request.

According to [14], the key benefits of the microservice architecture are:

• Technology Heterogeneity: Since the system can be composed of multiple, collaborating

services, the decision to use different technologies for each can be made. This allows the

choice of the right tool for each job, rather than following a one-size-fits-all approach.

6 Francisco Pinto Sebastião

• Resilience: If one component (i.e., service) of the system fails and it doesn’t cascade, the

problem can be isolated, and the rest of the system can carry on. Systems that can handle

the total failure of services and degrade functionality accordingly can be built.

• Scaling: Only the services that need scaling can be scaled, instead of the system-as-a-whole.

This allows to run other parts of the system on smaller, less powerful hardware.

• Ease of Deployment: A change can be made to a service and deployed independently of

the rest of the system, allowing the fast deployment of code and rollback of said service in

case of a problem.

• Organization Alignment: Allows for the better alignment of architecture for organizations,

minimizing the number of people working on any one codebase to reach the optimal team

size and productivity. Ownership of services can also be shifted between teams to keep

people working on more than one service.

• Composability: Opens opportunities for the reuse of functionality. Allows functionality to

be consumed in different ways for different purposes.

• Optimizing for Replaceability: Being small, these can be replaced with a better

implementation or removed altogether. Teams are comfortable with completely rewriting

or killing services when required or no longer needed.

On the other hand, there are also disadvantages to microservices:

• Multiple design choices: The increased complexity that it brings can be a pain to keep track

of the overall system is composed of several components (i.e., services).

• Difficulty of testing: The larger scope tests (i.e., end-to-end tests) become a challenge as

the number of moving parts increases (i.e., services). These moving parts can introduce

failures that have nothing to do with the functionality under test, but some other non-

related problem (e.g., services being down, network issue, incorrect version of used

services being tested against).

• Difficulty of monitoring: Unlike a monolith where there is only the need to look at a single

entity, microservices, scale with the number of components, meaning multiple servers to

monitor, multiple logfiles to go through, and multiple places where network latency could

cause problems. This in turn makes the task of monitoring and investigating issues

substantially harder.

• Operation overhead: With multiple services to build, test, deploy, and run, comes a

significant operation overhead. This means the number of processes also scales (e.g., the

number of pipelines, and repositories to maintain).

To conclude, the microservice architecture is ideal in the current context of rapid

transformation and evolution of systems (i.e., agile environment) where it is important for

organizations to stay relevant in the market, especially those in the context of critical systems,

but it also has some tradeoffs they need to have in mind.

Francisco Pinto Sebastião 7

1.2 Problem

The security of critical IT systems (e.g., bank systems, airports, hospitals, etc.) is traditionally

associated with monolithic data centers and legacy infrastructures, which entails a set of added

challenges in terms of evolution and protection. Critical systems are characterized by a high

degree of intolerance to threats, where exposure to the smallest failure could cause significant

damage. In the current context of rapid transformation, especially regarding the variety of

attacks that are practiced today, it is important to bear in mind that legacy systems, with

structural adaptation difficulties, are especially susceptible [19]–[21]. In this sense, it is essential

to be aware of the advantages and solutions offered by more recent architectures, such as

Microservices, where the impacts of evolution will be smaller thanks to the segmentation of

the system into several components and where its security is addressed using multiple layers

of protection.

1.3 Objectives

The main objective of this dissertation is to understand how microservices can respond, from

an architectural point of view to a context of high demand that is from critical systems relying

on concepts such as resilience, durability, adaptability, scalability, confidentiality, integrity, and

availability.

The goal is to conduct a case study of the compatibility of a simple banking system that adopts

the microservice architecture, from the aspects of cybersecurity, particularly how artificial

intelligence and machine learning can perform in this aspect, and operational resilience to a

specific field, in this case, critical systems.

To achieve these, the following research questions (RQs) were formulated:

• RQ.1: Does the proposed architecture offer high levels of operational resilience?

• RQ.2: Does the adoption of AI methods assist in security in such a context?

1.4 Planning

To plan this case study, the initial goal of researching the current developments and/or studies

published on the subject at hand was set so that the conclusions taken from the existing

research can be understood and worked with to have a strong contextual basis to approach this

case study and to add more value to it.

Knowing this information, a value analysis was made for this project, to understand the need

for it and to realize what this adds to the problem and to the context where it’s inserted.

8 Francisco Pinto Sebastião

Afterward, the design and implementation of the software prototype that will be used to

approach the goal of this project will be made, followed by extensive testing in various scenarios

(i.e., experimentation).

Finally, the outputs of the experimentation made will be gathered to assess these, based on a

series of measurable dimensions and factors.

To summarize, the execution of this case study can be split into three stages:

1. Research and analysis: Gathering of existing knowledge on the theme as well as the

evaluation methodologies, and value analysis of the project.

2. Design, implementation, and experimentation: Design, supported by UML diagrams (i.e.,

architecture, components, system), and the development of the software prototype,

followed by experimentation composed of various scenarios.

3. Outputs and results: Gathering of the outputs by the experimentation to compile these.

The result of this compilation will be used to answer the RQs and reach a conclusion.

1.5 Document structure

To ease the reading of this document, below is the list of chapters accompanied by an

explanation of their contents:

• Introduction (Chapter 1) – Introduction of the dissertation. Here the context, problem,

objectives, and planning of this dissertation can be found.

• State of the art (Chapter 2) – Presents what relevant research has been developed on the

subject, what this dissertation seeks to contribute to, what technologies exist, and what

patterns are typically applied in such a context.

• Analysis (Chapter 3) – Presents an analysis of the domain’s concepts and activities, its

processes and stakeholders, and its use cases.

• Design (Chapter 4) – Presents the design choices made on the developed solution from

coarse-grained to fine-grained aspects finishing on the database design.

• Technologies (Chapter 5) – Introduces and describes the adopted technologies for the

development of the solution.

• Implementation (Chapter 6) – Exposes the construction of the solution, starting by

describing particular situations and how the underlying infrastructure was set up.

• Evaluation (Chapter 7) – The solution is evaluated according to a certain methodology that

aims to answer a couple of investigation hypotheses, what tests were developed and the

importance of CI/CD, to understand what conclusions can be made.

Francisco Pinto Sebastião 9

• Conclusions (Chapter 8) – The conclusions that were taken from the work performed can

be found here as well as the found limitations, the future work that can be done, and a

personal appreciation of the work done by the student.

• Annex A – Contains the value analysis of this dissertation.

• Annex B – Complimentary figures and diagram that present more information related to

certain parts of the dissertation.

10 Francisco Pinto Sebastião

Francisco Pinto Sebastião 11

2 State of the art

This chapter aims to explore studies and papers that have been published regarding the

dissertation’s aspects previously contextualized (see Context), to analyze and compare their

aspects, and the evolution of research over the recent years. Then, an overall comparison of

these studies is conducted, followed by a conclusion on these, based on the presented

information, on how this dissertation positions itself compared to the current investigation.

Finally, a description of some existing technologies and commonly applied concepts is

presented.

2.1 Relevant studies and papers

This section presents the evolution of research over the years, and relevant literature, analyzes

it, compares their aspects, and looks at the open questions left by these. There have been a lot

of interesting studies and papers published over the last years but there isn’t one that touches

on all four aspects (i.e., microservices, cybersecurity, artificial intelligence, and operational

resilience) that this dissertation seeks to work on. They only look at combinations of

microservices with the other three aspects. Research on cybersecurity regarding cyberattacks

was conducted, specifically the detection, labeling/classification with resources to artificial

intelligence and machine learning to understand how it could relate in a microservices context.

2.1.1 Evolution of research over the years

To learn the evolution of the theme at hand over the years the digital libraries Association for

Computing Machinery (ACM), Science Direct, and Institute of Electrical and Electronics

Engineers (IEEE) Xplore were surveyed about the number of studies regarding this theme

through the B-On and Science Direct digital libraries. The research was made following the

Systematic Mapping Review (SMR) method [22].

The conditions in Table 2 were used as criteria of inclusion/exclusion.

12 Francisco Pinto Sebastião

Table 2 - Conditions for inclusion/exclusion criteria

Criteria Conditions

Information
topic

Migration of critical systems to the microservice architecture; Cybersecurity
practices in microservices; Artificial intelligence in microservices; Threat
detection and/or labeling in cybersecurity

Type of
information

Academic Journals; Conference Materials; Magazines; Trade Publications;
Reports; Review Articles; Research Articles

Publication
date

Between 2018 and 2022

Language English

Type of review Peer review

Access Accessible to ISEP teaching staff and students

Bearing in mind the stated conditions, the following queries were used:

• microservices operational resilience OR microservices resilience;

• microservices cybersecurity OR microservices cyber security;

• microservices artificial intelligence;

• artificial intelligence cybersecurity OR artificial intelligence cyber security.

The obtained overall results are presented in Figure 3.

Figure 3 - Number of results presented by B-On and ScienceDirect on the search using all

queries1

1 Obtained in 2023-02-25.

38 72 98 128
236

106
180

281

475

878

282

531

894

1135

1436

0

200

400

600

800

1000

1200

1400

1600

2018 2019 2020 2021 2022

Overall results with all queries

ACM ScienceDirect IEEE Xplore

Francisco Pinto Sebastião 13

As shown in the graph above, in all digital libraries, there is an increasing trend in the number

of results over the last five years with 2022 as the year with largest number of obtained results

for all. This trend is most apparent in IEEE Xplore then in the other two, with Science Direct

coming up afterwards and ACM consistently with the lowest number of obtained results.

It should be noted that most of the obtained results were from the last query, with the other

three queries having a more conservative number of results. The results for each individual

query can be observed in Annex B.

A total of 13 papers were selected for full review after the removal of duplicates and application

of the criteria above. These papers are introduced and described in the following sections.

2.1.2 Transition of critical systems into the microservice architecture

In this section, papers related to the transition into a microservice architecture by critical

systems are presented. In Table 3 a summary of these papers can be observed, and a more

complete description is followed.

Table 3 - Summary of papers on the transition of critical systems into the microservice

architecture

Paper Publication
Date

Scope of
transition

Topic focus

[23] 12/2021 One core
system

Complete migration of a core system from a
monolith architecture to a microservice
architecture

[24] 08/2022 Gradual
transition of
systems

Development of an integration layer on top
existing legacy systems to encapsulate these, and
the gradual peeling off (i.e., decommission)
monolith components/systems into new
microservices

[25] 08/2022 Integration
layer on top of
legacy systems

Development of an integration layer based on a
microservice architecture on top of legacy systems
and the flip of consumer/producer roles to avoid
reengineering the legacy systems

In [23] and [24] detail how large northern European financial organizations migrated legacy

systems (i.e., critical systems), previously in a monolithic architecture, into a microservice

architecture. In the case of [23], the organization made a complete transition of one of their

core systems, responsible for foreign exchange (FX), into the microservice architecture. In [24],

the organization conceived and is still following a global transition plan of their legacy systems

into the microservice architecture. This transition plan consists of three key components: the

(1) gradual peeling off monolith’s services into microservice, the (2) decommissioning of the

monolithic system by identifying services to be transitioned, and the (3) encapsulation of the

14 Francisco Pinto Sebastião

legacy systems with an integration layer to allow engineers to develop new applications of top

of this layer. The development teams at both organizations noted on how much faster and

easier it became to introduce change and innovation into their systems, after separating their

components into independent microservices. They further compare both architectures from

different aspects (e.g., availability, reliability, complexity, heterogeneity) and the problems that

the migration solved, minimized and persist. Overall, the systems became faster, resilient and

easier to operate, even with the increased operation overhead.

[25] documents how at Hitachi Research & Development (R&D) they developed a microservices

integration layer (MIL) for next-generation rail operations centers, mission-critical systems.

What is interesting about how they implemented the MIL is that instead of migrating the

existing legacy systems, whose programming languages have limited native support for building

microservices, they reversed the papers by turning the MIL into the service provider and the

legacy systems into consumers. This eliminated the need to reengineer the legacy systems into

microservices, which would be a significant challenge. So, by turning all systems into clients of

the MIL, they centralized the security management and simplified the tracing of security calls,

monitoring and debugging.

They highlight four lessons learned:

• Fallback option: Having a fallback option is a good idea when introducing new technology.

Despite of extensive testing and no issues over continuous operation during a few weeks, a

memory leak was found that led to failures after very long runtimes.

• Redundancy ≠ Availability: The ability to failover is not always sufficient to guarantee

availability. They exemplify that when starting up or recovery from failure, these systems

need to read a lot of state information from the MIL quickly. A microservice instance failing

in combination with a client causing an increased message load during recovery could cause

a domino effect if the other instances are unable to handle the increased loads from failed

instances and if the load balancer is not distributing loads equally.

• Reactive systems and backpressure: It highlights the importance of detecting failures early

and recovering quickly through failover. Backpressure is a characteristic of reactive systems,

where slow consumers (e.g., subscribers) are unable to consume messages at the rate they

are produced. Their initial strategy of using an unlimited buffer worked until consumers

became unable to recover, causing performance degradation, loss of messages and out-of-

memory errors on microservice instances. So, they set a limit on the backpressure buffer

size for each individual subscription. Another issue was the inability of the microservice to

detect failed network connections, which they fixed with a heartbeat event. These lessons

helped them develop a very resilient system that is currently in operation.

• Simple and future-proof design: The lesson here is that its good practice to think ahead

and consider possible future requirements and maintain architectural flexibility to quickly

respond to new requirements. They also note that the theoretical advantages of

autonomous development, deployment, composability, and replaceability in practice can

be easily negated when hidden dependencies are introduced, such as adapters or

connectors from vendor or version specific external components (i.e., external

Francisco Pinto Sebastião 15

dependencies). The good practice would be to avoid using these and to rely on open

standards when possible.

2.1.2.1 Open questions

[23] affirm that there will be an increase in the development of new programming languages

intending to address the microservice paradigm. They also note that this paradigm is still

missing a conceptual model able to support the early stages of development and list a set of

research challenges to be covered by a software-engineering approach within the microservices

field:

• The need for a uniform way to model autonomous and heterogeneous microservices, to

allow the easy interconnection through dynamic relations, turning the engineering process

more efficient;

• Each microservice should have a partial view on the system knowledge, and at the same

time must be specialized and adapted to face different requirements, user needs, context

changes, and missing functionalities;

• The possibility of handling at run-time improbable situations such as context changes,

availability of functionalities, and trust negotiations, instead of analyzing these situations at

design-time and pre-embedding the corresponding recovery activities.

[24] notes on a limitation that is the lack of quantitative metrics to give a more detailed

conclusion on his work. He does provide a direction to follow for future research which is to

investigate performance loss when encapsulating large legacy monolith systems containing

architecture debt, and to research the effect of encapsulation when compared with rewriting

systems, which would benefit organizations with legacy system that want to be competitive in

a rapidly changing market.

2.1.3 Proposal of cybersecurity practices for microservices

In this section papers related to the proposal of cybersecurity practices for microservice

architecture-based systems are presented. In Table 4 a comparison of these papers can be

observed, and a more complete description is followed.

Table 4 – Comparison of papers on the proposal of cybersecurity practices in microservices

Paper Publication
Date

Scope of
proposal

Technical
approach

Security practices proposed

[13] 05/2018 Component
level

Containers Security framework for
authentication between containers

16 Francisco Pinto Sebastião

Paper Publication
Date

Scope of
proposal

Technical
approach

Security practices proposed

[26] 08/2021 System level Physical
systems

HTTPS and authentication on the API
Gateway, authentication in the
orchestrator service, service
responsible for authorization

[27] 01/2021 System level Kubernetes
cluster

Injection of HAProxy service in each
pod to encrypt internal requests,
Kubernetes to encrypt external
requests

In [13], it touches on an interesting point that is that most engineers when developing

microservices assume that the components are safe inside their boundaries (i.e., the security

perimeter encircles the system). They instead propose that the security perimeter should be

the level of each microservice. To achieve that, they designate a standard security framework

for the authentication between microservices, giving Netflix as an example of the industry.

[26] on the other hand broadens the scope by applying different security mechanisms for

authentication (i.e., Use of HTTPS and authentication on the API Gateway and authentication in

the orchestrator microservice.) and authorization (i.e., Guard microservice that checks

authorization levels to access the other components.) in the different components/levels of a

microservice architecture-based system. It proposes using orchestration as a mechanism to

control the components and demonstrates how the flow of a request works over the security

mechanisms comparing the execution times of each security mechanism and all these

combined. The results were quite interesting because while the overall execution time with the

combined security mechanisms was significantly higher, it was still within an adequate range.

Another interesting proposal on how to add security in microservices, in the context of a

Kubernetes [28] cluster, is shown in [27]. They propose the injection of a HAProxy [29] service

in each pod, to encrypt both external (Kubernetes Service) and internal (i.e., between pods

using Transport protocol – Kubernetes Headless Service) HTTP requests. In this study the system

only suffered a 7% loss in performance, an acceptable value.

2.1.3.1 Open questions

[26] ends on the direction that is to replicate his study from the choreography composition of

microservices, since it provides faster composition cycle times than orchestration, as well the

investigation of the expansion of security mechanisms.

[27] mentions that there are still other technologies to investigate that could have a better

impact, or the need to evaluate their proposal in various workload patterns, and that there is

the hypothesis of using encryption to store data.

Francisco Pinto Sebastião 17

2.1.4 Usage of artificial intelligence in microservices

In this section, papers related on usage of artificial intelligence in microservices are presented.

In Table 5 a comparison of papers is presented followed by a more complete description of each.

Table 5 - Comparison of papers on the usage of artificial intelligence in microservices

Paper Publication
Date

Context of
proposal

AI
method

Technical
approach

Proposal main points

[30] 03/2022 Security of
Internet of
Things (IoT)
systems

DL Docker
containers

Multiple containers per AI
based microservice or
cybersecurity solution at
the edge of the network;
AI based orchestration for
the optimization of
resources and secure
deployment of
microservices; Each
microservice contributes
to the AI service(s) of each
application.

[31] 07/2018 Implementation
of ML-as-a-
Service for
general purpose
usage

ML Docker
containers

ML configuration pool that
indicates which model and
input/output nodes to use
to quickly deploy a
microservice with the
chosen configuration;
Independent trainer
service that: receives
training data from other
microservices and feeds it
to the ML microservice;
evaluates the ML
microservice output to
update parameters in
configuration pool.

[32] 12/2022 Self-
improvement of
systems

DL Docker
containers

One component to
analyze, generate and
inject errors to stress the
microservice; One
component that first
extracts real-world data
from random noise to
generate synthetic data
then compares both data

18 Francisco Pinto Sebastião

Paper Publication
Date

Context of
proposal

AI
method

Technical
approach

Proposal main points

types until they are
indistinguishable; One
component that uses that
data to identify
opportunities and builds a
checklist for possible
scenarios of fragility;
Virtual environment for
stress testing real-world
copies of the systems with
countermeasures.

In the first one, [30] conducted an extensive gathering of existing literature concerning

microservices, AI models such as ML and DL, data privacy and network security within IoT nodes.

After this gathering, they consolidated the gathered literature into three groups (i.e., tables), a

category, (1) related studies to their theme, (2) edge AI computing, and (3) microservices

architectures at edge computing, while presenting what was proposed, developed, etc., in each

literature. Then, they made a comparison of all three groups over various categories.

Afterwards, introduced what sort of challenges exist concerning security in microservices at

edge computing from four distinct aspects, (1) containers, (2) data, (3) permission, and (4)

network. They then propose a secure edge AI microservices framework based on realistic

implementation of IoT networks. It consists of:

• Multiple Containers of Virtual Machines (CVMs) allocated for every AI-based microservice

or cybersecurity solution, such as intrusion detection and threat intelligence, at the edge of

the network;

• AI-based microservices could apply an AI orchestration process that automatically configure

the computing resources and securely implement microservices at the edge;

• Each microservice provides part of the overall AI service related to each application.

This framework is an interesting proposal, but it raises some questions which can be read in

section 2.1.4.1.

[31] proposes on how to utilize ML as a microservice (MLaaS), for offline contexts in IoT. They

present a microservice architecture where there exists a trainer microservice and ML

configuration pool (i.e., a configuration designates what ML algorithm to use and the input and

output data nodes).

This pool would be utilized to quickly deploy microservice with a preferred ML configuration.

The trainer microservice implements the functionality to train the ANN offered by the ML

microservice. Training data is sent from the other microservices to the trainer microservice,

then from the trainer microservice to the ML microservice. It also evaluates the output of the

ML microservice and updates the corresponding parameters in the configuration at the pool.

Francisco Pinto Sebastião 19

They justify that separating the ML microservice from the trainer microservice makes sense

since both offer different functionality and depending on the ANN it offers the possibility to use

different trainers or combining training approaches.

They then evaluate the performance of their solution using the same ML microservice with

three different configurations, Feed-Forward Neural Network (FFNN), Deep Believe Network

(DBN), and Recurrent Neural Network (RNN). Both ML and trainer microservice for the three

configurations were implemented using the Google TensorFlow Python library. The

performance evaluation was conducted by comparing the MLaaS approach to calling the

TensorFlow library directly:

• Runtime performance: FFNN and DBN were slower in the ML microservice when compared

to the TensorFlow library, whereas RNN was significantly faster in the ML microservice.

• Learning performance: They note how the processing steps of the TensorFlow library are

significantly longer for classification, but when compared to the MLaaS approach this

difference can be neglected due to the overhead added per library invocation by the MLaaS

approach.

• Implementation performance: They compare for each algorithm the implementation and

setup times, as well as the resulting lines of code in both library and MLaaS approach. The

latter significantly reduces the development time for both implementation and setup for

each of the ANNs, being identical in all.

This study demonstrates how ML implementations can be modularized to facilitate and speed

up the implementation of ML functionality in microservices, therefore simplifying the use of ML

significantly.

[32] proposes a concept of a microservice architecture antifragile framework for critical

infrastructure (CI) systems. The antifragility concept states that systems can improve with

threats and shocks [33], whereas resilience means to maintain or to recover the original state.

This framework is composed of four components:

• Stressor: The central element of the concept. It seeks to challenge the system with

randomness and disruptions while benefiting from these to gain information on

improvement. It crosses the boundaries of intolerable failures, exposing the microservices’

fragility, using virtual copies of these, while monitoring its behavior;

• Autonomous learner (AL): This component constructs a fragility list tracing to events or

functions of the microservice’s unexpected behavior. For that it trains a Generative

Adversarial Network (GAN), consisting of two separate neural networks, to generate

synthetic data based on data collected from monitoring the fragile microservices (i.e., from

the Stressor component). The first neural network has the task of generating synthetic data

from random noise extracted from trained real-world data. The second neural network

means to compare the generated synthetic data to the real data stopping the classification

when both are indistinguishable. This data will help the component to train on unclear

20 Francisco Pinto Sebastião

failures and unexpected stressful situations further helping the prediction of unexpected

microservice behavior;

• Antifragility checklist builder: This component builds a fragility checklist whose aim is to

prepare other microservices for possible future scenarios by learning from the fragility of

the stressed microservice. It uses the fragility list (i.e., from the AL component) and

transforms it into knowledge and opportunities by contextualizing questions for the

selected microservice in how it would gain from stressors and approach detected fragilities,

then the quantitative responses are aggregated. This checklist could be reused as a

guideline to update similar microservices across different CI domains;

• Virtual CI environment: Adopting the Digital Twins concept, it seeks to create a realistic

digital copy of a microservice-based CI (MCI). For this, real data from realistic MCI is

collected. It aims to create a safe virtual CI environment where the collection of data is done

over time and under different conditions. It tests the impact of antifragility changes on the

behavior of microservices across different virtual CIs after randomly stressing a virtual

microservice and conducting an antifragility analysis. This allows to identify antifragility

countermeasures to be applied in real MCIs.

This framework is experimented on a microservices application that is a train ticket system. A

set of fault types were identified along with fault cases associated with each. For this

experiment an open-source AI tool, Gretel.AI [34], was used to generate synthetic data and

comparative analysis was performed on various models for the data classifier. These were k-

Nearest-Neighbors (KNN), Logistic Regression, Random Forest (RF), Support Vector Machine

(SVM), and Multi-Layer Perceptron (MLP).

The evaluated metrics were accuracy, recall, precision, and F1-score. In terms of results, the

GAN model with the resampling of training data was observed to aid classifiers in outperforming

the evaluation results obtained on the original training data (e.g., KNN achieved improved

scores on all metrics – 90.17% accuracy, 88.13% precision, 90.17% recall, 88.44% F1-score –

with the resampled training data when compared with original training data – 86.02% accuracy,

80.63% precision, 86.02% recall, 82.21% F1-score). These obtained results reveal that the GAN

model can increase fault detection with the creation of virtual data like the original data,

allowing an increase in anomaly detection capabilities which enable the creation of a more

accurate fragility list. Overall, this paper proposes an interesting approach on how AI could be

leveraged to improve the behavior of microservices in unexpected scenarios in a context of CIs.

2.1.4.1 Open questions

[30] lists several open research challenges and future research directions:

• Edge lightweight microservice algorithms: In the context of IoT, the increasing number of

systems deploying nodes with limited resources pose a serious challenge on how these

systems are performing. To tackle that, the direction would be to invest into more research

on lightweight algorithms to operate on these constrained systems, since these would

ideally consider the resource scarcity to maximize the systems operations, performance,

etc.;

Francisco Pinto Sebastião 21

• Resource provision at edge nodes: They identify that DL processes are hard to implement

due the limited specifications and sheer amount of data that each device has, that the time

required to train a deep network plays a significant role, and that time-critical and real-time

applications would not be able to benefit from DL at the IoT edge. The direction would be

to investigate how load balancing and scheduling mechanisms could optimize resources at

edge nodes and servers;

• Microservices construction and deployment in IoT devices: They identify that the

execution of AI algorithms could require a set of software dependencies, and for that a

solution to isolate the various AI services within shared resources is needed. This brings

multiple challenges since it is a new field, one of which is how to flexibly handle AI

deployment and management. Another would be how to achieve live migration of

microservices to minimize migration times and the unavailability of AI services when faced

with user mobility. Finally, the challenge of resource orchestration to obtain the best

possible performance;

• Security-related challenges: Traditional security practices and solutions cannot cope with

the novel requirements brought by IoT networks. There is a need for intelligent methods

that would analyze and automate security reactions. The best methods would be to

investigate intrusion detection, threat intelligence and digital forensics-based techniques

at the network edge;

• Development of AI algorithms as microservices: They suggest the development of AI-based

micro-algorithms as services. This would allow for the efficient running and quick

deployment of distributed AI micro-algorithms, especially ML and DL, for cybersecurity

applications at the edge nodes. This paradigm could be a design of an agile and secure

architecture for AI models, such as data protection, privacy-preserving, and intrusion

detection algorithms.

Finally, they end on that future direction of this paper would be implement their proposal on

several testbeds and applying it on different scenarios where AI models are to be deployed and

managed, as well as to measure accuracy, efficiency and time metrics.

While [31] do not mention any directions for future research, an important one can be inferred:

the application of their proposal for different contexts. The contexts could be the usage of more

distinct AI models, such as Long-Short Term Memory (LSTM) or RF, in various fields of

application, such as cybersecurity that this dissertation seeks to look at.

[32] leaves some open questions since it is an early concept of its proposed framework and that

is also aware the in the current CIs context there are still very few microservice-based systems

with many of them being still in monolithic systems, limiting the cloning of real physical MCIs.

Future research would be in conducting more extensive evaluations in other distinct CI

scenarios while looking at other aspects of the GAN.

22 Francisco Pinto Sebastião

2.1.5 Threat detection and/or labeling in cybersecurity

In this section, papers related on threat detection and/or labeling in cybersecurity are

presented. In Table 6, a comparison of papers is presented, followed by a more complete

description of each.

Table 6 – Comparison of papers on threat detection and/or labeling in cybersecurity

Paper Publication
Date

AI
method

Number of
AI models

Technical
approach

Data
dimensionality

Containerized
microservices

[35] 02/2021 ⨯ 0 Docker
containers

Network
traffic data

✓

[36] 07/2022 ML 1 Docker
containers

Network
traffic data

✓

[37] 11/2019 ML One per
system
component

Docker
containers

Network
traffic data

✓

[38] 12/2021 ML 3 Sequential
analysis

System
generated
events

⨯

In [35] they attempted to detect attacks in two scenarios, (1) password guessing and (2) NoSQL

injection, using distributed tracing, a method of tracking application requests as they flow from

frontend devices to backend services and databases [39] . This study can be considered limited

since it only made use of sequential API calls to simulate attacks and used a small dataset. For

the first scenario, they were able to detect the attacks looking at the generated distributed

traces, whereas on the second scenario they argue that it is not possible to detect this type of

attack since it would result in multiple objects being returned from a NoSQL database instead

of a single object, meaning there wouldn’t be any substantial changes to the distributed logging

data and hence would not be detectable.

To follow up on the previous study, in [36], they broadened the scope by using a neural network,

specifically a graph convolutional neural network (GCNN). In short, they designed, developed

and trained a Diffusion Convolutional Recurrent Neural Network (DCRNN) model, a state-of-

the-art GCNN, by capturing existing spatial data and temporal dynamics within the tracing data.

They intended to use the DCRNN to model application topology and predict ongoing traffic, the

irregular microservice traffic caused by various types of cyberattacks (i.e., attack detection).

Three distinct types of attacks were used: Brute force password, batch registration of bot

accounts, and distributed denial of service (DDoS). All attacks were detected, making this study

a success, but there were some limitations. For example, the fact that only a single DCRNN

model was used means that this model was trained around the entire systems behaviors. The

Francisco Pinto Sebastião 23

tradeoff in this is that it's expensive to maintain a model in this manner due to the implication

that whenever a new change is introduced in the system, something frequent in microservices,

then it is necessary to retrain the model which is costly both in time and resources. Another

study by [37] is mentioned where multiples models were used, meaning less time in training

but as a tradeoff this method is not able to detect attacks spanning multiple subsystems.

[38] proposes an interesting tool that contains a ML component (ML Engine) whose models

analyze alerts and compute a probability score for each alert. The experimented ML algorithms

were RF, MLP and LSTM. In this study, ML was used from a supervised perspective, being split

in two phases, learning and predicting. In the learning phase, events, alerts and incidents were

collected to be preprocessed into a clean dataset. The alerts include features such as severity

and are enriched from related events. Data from an external component was used to label the

alerts accordingly to identify which scaled into incidents and those that did not. The dataset

was then split for evaluation purposes. After training the model it can be deployed into the ML

Engine. Following up in the predicting phase, when the ML Engine is executed, it fetches the

alerts not yet inspected and its model calculates an incident probability score for each one, and

stores these in a database. To visualize this information, they used Kibana where two

dashboards were built, one for alerts and one for incidents. In these dashboards, various

elements of visualization such as graphs and gauges were assembled.

2.1.5.1 Open questions

[38] finishes on how the future direction of the application of their tool would be to see how it

would respond different specific attack scenarios.

2.2 Comparison of the gathered research

In this section a comparison of the research presented in the previous section is made. This

comparison is made by categorizing the aspects that this dissertation seeks to investigate and

presents which aspects each paper covers. In Table 7, this comparison is presented.

Table 7 - Comparison of researched papers in the aspects of this dissertation

 Category

Paper

Microservices Cybersecurity Operational
resilience

Artificial
Intelligence

[23] ✓ ⨯ ✓ ⨯

[24] ✓ ⨯ ✓ ⨯

[25] ✓ ⨯ ✓ ⨯

[13] ✓ ✓ ⨯ ⨯

[26] ✓ ✓ ⨯ ⨯

[27] ✓ ✓ ⨯ ⨯

[35] ✓ ✓ ⨯ ✓

24 Francisco Pinto Sebastião

 Category

Paper

Microservices Cybersecurity Operational
resilience

Artificial
Intelligence

[36] ✓ ✓ ⨯ ✓
[37] ✓ ✓ ⨯ ✓
[38] ⨯ ✓ ⨯ ✓
[30] ✓ ✓ ⨯ ✓

[31] ✓ ⨯ ⨯ ✓
[32] ✓ ⨯ ⨯ ✓

As observed in the table above, current literature does not cover all four aspects this

dissertation seeks to expand on. What can be observed is that all papers cover some

combinations of these aspects.

2.2.1 Conclusions

In this section, conclusions are made based on the current research and how it relates to this

dissertation.

As explained and presented in the previous sections (see Relevant studies and papers and

Comparison of the gathered research), it can be concluded current literature does not cover all

four aspects that this dissertation seeks to investigate. Summarized, current literature covers

one of the following:

• The transition of critical systems from a monolith architecture to a microservice

architecture highlights the several benefits that came with this transition;

• Different approaches on how to implement security mechanisms or technologies at

different levels on microservices to turn these more secure and in one of those papers

highlights the (minor) performance loss that came with those mechanisms;

• How the usage of AI in microservices can be taken advantage of in microservices either in a

cybersecurity or a general-purpose context;

• The different techniques that can be used to detect and/or label attacks in cybersecurity

with a look at how the usage of AI can be leveraged in this aspect in most of these papers.

The open questions left by the gathered literature that apply to the context of the dissertation

are to be considered in its development since it will investigate how the four aspects can

complement each other in the hopes of making a great contribution to research on its topic,

and these open questions can provide a path on hypothesis for design, implementation, and

experimentations to conduct.

Francisco Pinto Sebastião 25

2.3 Existing technologies and patterns

This section presents what technologies currently exist and which patterns are widely used in

microservices when it comes to making systems more secure with AI, and resilient.

2.3.1 Technologies

This section describes some of the technologies that are widely used for security (and more) in

microservices that provide rich AI feature sets for anomaly detection and possibly prevention.

2.3.1.1 Amazon OpenSearch

Amazon OpenSearch is an Amazon Web Services (AWS) service that allows to perform

interactive log analytics, real-time application monitoring, and more, for applications hosted on

AWS [40], as it’s built on top of OpenSearch, an open-source distributed search and analytics

suite derived from Elasticsearch [41].

Figure 4 - Amazon OpenSearch workflow [40]

More importantly, it provides ML features for real-time anomaly detection to proactively detect

anomalies in real-time streaming data. It can detect anomalies such as unusually high error

rates or sudden changes in the number of requests. This feature uses the Random Cut Forest

algorithm. It’s an unsupervised algorithm that constructs decision trees from numeric input

data points in order to detect outliers (i.e., anomalies) [42].

2.3.1.2 Google Dataflow

Google Dataflow is a Google Cloud service that provides a unified stream and batch data

processing at scale. It can create data pipelines that read from one or more sources to transform

and write data to a destination. It has multiple use cases such as data movement (i.e., data

ingestion and replication across subsystems), extract-transform-load (ETL) workflows, and most

importantly, applying ML in real-time streaming data [43].

26 Francisco Pinto Sebastião

Figure 5 – Example architecture of a real-time anomaly detection solution in Google Cloud

[44]

Dataflow allows for anomaly detection by building streaming analytics pipelines that detect

anomalies by analyzing and extracting features from real-time logs [44].

2.3.1.3 Elastic Machine Learning

Elastic offers ML features that work seamlessly with its stack. These allow us to analyze and

generate models for the collected data’s behavior patterns. It contains two categories of ML

with two types each as presented in Table 8.

Table 8 - Types of Machine Learning in Elastic [45]

Category Type Description

Unsupervised Anomaly
detection

Requires time series data as it builds a probability model
that is run continuously to identify unusual events as they
occur allowing it to evolve over time proving insights for
forecasting future behavior

Outlier
detection

Performs data frame analytics that identifies unusual points
in datasets by analyzing the proximity and density of
datapoints. It does not run continuously and generates a
copy of the dataset that has each data point annotated with
an outlier score that indicates the outlier extent of the data
point compared to others

Supervised Classification Performs data frame analytics that learns relationships
between data points to predict discrete categorical values
such as if requests have a malicious domain or not

Francisco Pinto Sebastião 27

Category Type Description

Regression Performs data frame analytics that learns relationships
between data points to predict continuous numerical values
such as response times for requests

These ML features are simple to configure and start since the Elastic Stack provides an easy-to-

use UI and plenty of configuration options for each of the types above through Kibana.

2.3.2 Patterns

This section describes what patterns are most commonly used in terms of resilience in

microservices.

2.3.2.1 Circuit breaker

Circuit breaker, as its name suggests, is a pattern designed to stop interacting with a service if

it’s not responding. It provides stability while the system is recovering from failure by quickly

rejecting a request for an operation that’s likely to fail rather than waiting for it to timeout or

never return. In the case of distributed systems, which is the case with microservices, it also

prevents the cascade of failures across the systems [46]. It is comprised of three different states,

as shown in Figure 6.

Figure 6 - Circuit breaker states [47]

From what can be observed, the three states are [46]:

• Closed: the service receives requests and either succeeds or fails a number of times before

overcoming its threshold;

28 Francisco Pinto Sebastião

• Open: the circuit breaker opens when the failure count is greater than its threshold and the

service will not receive requests while it’s in timeout;

• Half-Open: after the timeout, the circuit breaker will enter this state where it will send a

request to the service and depending on the response will either go to the open or closed

state where it will go through timeout again.

2.3.2.2 Timeout and retry

Timeout and retry is a pattern that is employed as a resiliency mechanism by setting a specific

timeout for a service’s operations. If an operation times out then it’s considered a failure, and

with the retry logic then it can reattempt a certain number of times before stopping being

deemed an error [48].

2.3.2.3 Rate limiter

Rate limiter is a throttling pattern to control the consumption of resources and protect services

from excessive load by imposing limits on the rate at which services can be accessed (i.e.,

incoming requests). This ensures that services remain stable, responsive, and available to users

under varying load conditions. There are three common rate limiting strategies used in

microservices [49]:

• Fixed window: a fixed number of requests are allowed within a specific time window. Once

this limit is reached it starts rejecting requests until the next time window;

• Sliding window: known as the token bucket algorithm, it allows by continuously refilling a

bucker of tokens that represent the number of requests during a time period. A token is

consumed by request and if the bucket is empty then it’s rejected. It allows for more flexible

handling of varying traffic conditions;

• Leaky bucket: similar to sliding window, this algorithm imposes rate limits by emptying the

bucket at a fixed rate. Incoming requests are added to a bucket and if it overflows, the

requests are rejected. It enforces a consistent processing pace.

2.3.2.4 Health check

Health check is a design pattern that detects if a service is available (i.e., able to handle requests)

by periodically pinging a specific endpoint (e.g., HTTP /health) that returns the health of the

service [50].

2.3.2.5 Fallback

Fallback is a design pattern that allows services to continue the execution of requests in the

scenario of a failed request to another service by defining a structured behavior to be executed

upon failure, such as cached data, default values, or a user-friendly error message [51].

2.3.2.6 Bulkhead

Bulkhead is an applicational design pattern that is failure tolerant that derives from

compartmentalization and it achieves this isolation by segregating resources to maintain

stability and availability. There are two types of bulkhead isolation [52]:

Francisco Pinto Sebastião 29

• Resource-level isolation: manages the allocation of resources such as threads and

connection pools across different services ensuring that these do not affect each other;

• Process-level isolation: segregates services into different processes or containers ensuring

that if a service goes down the other continue to function without being impacted.

2.4 Summary

This chapter presented and described:

• How the research and collection of current and recent publications has evolved over the

recent years, and described some of these by category to highlight the work they performed

and what open points they left to be answered;

• The comparison of the collected research by categories and what conclusions can be drawn

from these;

• What technologies currently exist in making systems more secure with AI features and what

are the most commonly used patterns in turning microservices more resilient.

Francisco Pinto Sebastião 30

Francisco Pinto Sebastião 31

3 Analysis

This chapter presents an analysis of the type of business chosen to prototype/emulate a critical

system – in this case, a simple banking system. It starts by describing its main concepts

accompanied by the domain model and lastly, presents the main processes and stakeholders.

3.1 Concepts and activities

In this section, the business concepts are described by context while accompanied by their

respective portion of the domain model with the complete domain model being presented at

the end. It’s important to mention that domain was designed according to Domain-Driven

Design (DDD) concepts to maintain the business logic as simples as possible as to not make the

software development process more complex than it could be. This is important since one of

the security problems associated with critical systems is their highly complex domain and when

the software grows, its complexity tends to grow as well leading to non-ideal conditions when

it comes to tasks such as maintenance and development [53]. The first applied concept of DDD

that is mentioned is the usage of contexts (i.e., bounded contexts). Bounded contexts are a

central pattern in DDD that represent boundaries in which certain subdomains are defined and

applicable. When subdomains change within bounded contexts, the entire system doesn’t have

to change as well [54].

“The domain model is the organized and structured knowledge of the problem. The domain

model should represent the vocabulary and key concepts of the problem domain and it should

identify the relationships among all of the entities within the scope of the domain” [55].

3.1.1 Core context

The core context of the business is composed of users (i.e., clients) who possess at least one

bank account that can execute transactions to either another bank account or a utility account.

32 Francisco Pinto Sebastião

A user is composed of a (i) unique identifier (i.e., Guid/Uuid), a (ii) first name, (iii) last name, (iv)

email address, and an (v) identification number. The identification number is the user’s official

identification (e.g., citizen number) It possesses at least one bank account.

A bank account is composed of a (i) unique identifier, the (ii) user’s unique identifier, the (iii)

account number, its (iv) available balance, and (v) actual balance, its (vi) status, (vii) type, and

executed (viii) transactions. The account status indicates its status as one of three: active,

pending, or blocked. The account type indicates its type: savings, fixed, or loan. A valid bank

account needs to have a user associated, a type, and a status.

A transaction is composed of a (i) unique identifier, a (ii) bank account’s unique identifier, the

(iii) transacted amount, a (iv) reference number, and a (v) transaction type. The transaction type

indicates if the transaction was a fund transfer between accounts or a utility payment to a

provider (i.e., utility account). The bank account’s unique identifier indicates which bank

account is associated with the transaction (i.e., the transaction associated with the sender

account has its unique identifier, and the one associated with the recipient account has its

unique identifier). The amount is how much is sent from the sender’s account available balance.

The reference number depends on the transaction type: in the case of a fund transfer, it

indicates on both accounts (i.e., the transaction associated with each account) the recipient

account’s number, and in the case of a utility payment its value is inputted by the user.

A utility account is composed of a (i) unique identifier, the (ii) provider’s name, and the (iii)

account’s number. It has no associations.

Figure 7 - Core context portion of the domain model

Francisco Pinto Sebastião 33

3.1.2 User context

The user context is composed of users that are also present in the core context (i.e., have a

bank account) and can interact with the banking system (i.e., register, log in, execute

transactions, etc.).

A user is composed of a (i) unique identifier, an (ii) email address, a (iii) identification number,

a (iv) password salt, the (v) hashed password, and a (vi) status. The password salt is used to

further encrypt the user’s already hashed password. The hashed password is the user’s

password already encrypted to not be visible to those who can consult the database where it is

stored. The user status indicates its account status: pending, approved, disabled, or blacklist. It

references the user in the core context through the identification number which means that a

user can only register if they are presented in the core context (i.e., a client of the bank).

Figure 8 - User context portion of the domain model

34 Francisco Pinto Sebastião

3.1.3 Transfer context

The transfer context is composed of fund transfers that are requested by users to execute

transactions between bank accounts.

A fund transfer is composed of a (i) unique identifier, the (ii) sender’s account number, the (iii)

recipient’s account number, the (iv) transaction amount, the (v) transaction status, and the (vi)

transaction reference. The sender’s account number and recipient’s account number reference

the users’ accounts in the core context. The transaction status is shared with the payment

context and indicates the transfers status: pending, processing, success, or failed. The

transaction reference references the transaction’s unique identifier from the core context.

Figure 9 - Transfer context portion of the domain model

Francisco Pinto Sebastião 35

3.1.4 Payment context

The payment context is composed of utility payments that are requested by users to perform

payments from their accounts to the providers' accounts (i.e., utility accounts).

A utility payment is composed of a (i) unique identifier, the (ii) provider account identifier, the

(iii) bank account number, the (iv) transaction amount, the (v) transaction status, the (vi)

transaction identifier, and the (vii) reference number. The provider account identifier, bank

account number, and transaction identifier reference the utility account, bank account, and

transaction in the core context. The transaction status is shared with the transfer context and

indicates the payment’s status: pending, processing, success, or failed. The reference number

is provided by the user’s request.

Figure 10 - Payment context portion of the domain model

36 Francisco Pinto Sebastião

3.1.5 Domain model

The complete domain model encompassing all previously described contexts can be observed

below (cf. Figure 11).

Figure 11 - Domain model

3.2 Processes and stakeholders

Since the business intends to allow users to register, log in, and execute transactions, that

involves a set of processes to follow:

1. User and bank account creation: It involves the user creating a client profile and their

respective bank account(s)

Francisco Pinto Sebastião 37

2. Utility account creation: the utility provider (e.g., water supply, electrical supply, etc.) can

open a utility account to receive payments from their customers (i.e., users);

3. User registration: the user can register to be able to log into the banking system;

4. User login: the user can log into the banking system and request transactions;

5. Execute transfer between bank accounts: the user can request fund transfers between bank

accounts;

6. Execute payment from a bank account to a utility account: the user can request a payment

from their account(s) to a utility provider.

It is noted that processes 1 and 2 are not handled by the system but are relevant to the overall

comprehension of the business.

The users (i.e., stakeholders) of the banking system are the bank's clients (i.e., private clients –

users – and business clients – utility providers).

The following activity diagrams (cf. Figure 12, Figure 13, Figure 14, Figure 15) present a visual

description of the processes above.

Figure 12 - Activity diagram describing process 1

Figure 13 - Activity diagram describing process 2

38 Francisco Pinto Sebastião

Figure 14 - Activity diagram describing process 3

Figure 15 - Activity diagram describing processes 4 through 6

Francisco Pinto Sebastião 39

3.3 Use cases

With the information from the previous section, the use cases for the system are identified and

presented in the use case diagram below (cf. Figure 16).

Figure 16 - Use case diagram

By analyzing it, it can be observed that the use cases are a direct translation of the business

processes. As noted in the previous section, UC1 and UC2 – that address processes 1 and 2 –

are not processed by the system.

3.4 Summary

This chapter presented and described:

• What the concepts and activities of the business are by context with a description of these

accompanied with portions of the domain model, ending on the complete domain model;

• What are the processes and stakeholders of the business accompanied by activity diagrams

for a visual representation of these processes and their respective stakeholders;

• What are the use cases of the business with a visual representation by use case diagram.

40 Francisco Pinto Sebastião

Francisco Pinto Sebastião 41

4 Design

This chapter presents the most important decisions on the design of the solution. It starts by

approaching the design on a high level of abstraction and then goes to the succeeding lower

levels, more detailed, where it presents each component of the solution in a more specific

context finishing on the database design.

Knowing that the solution must emulate a critical system (cf. section 1.3), it’s important to

adhere to the Secure-by-Design approach for it be as secure as possible [56] and its methods

applications are mentioned in this chapter and in the following ones as well.

The designed solution imitates a banking system's core features such as user management and

transactions such as funds transfers and utility payments. The solution is composed of four

microservices: (1) a core service, (2) a user service, (3) a transfer service, and (4) a payment

service.

A description of the system’s architecture is now presented. Its description follows the C4

model, which suggests four levels of granularity [57]:

1. Context: The coarser-grained level (i.e., the highest possible abstraction) where the

system’s functions and external services are described;

2. Containers: Describes the independent parts – the containers – that compose the system;

3. Components: Describes the internal components of the containers;

4. Code: The finer-grained level where it presents the components’ details.

Different views are adopted as needed in each level’s description inspired by the 4+1 model

that proposes the following [58]:

1. Logical view: Presents information about the various parts of the system (i.e., its design);

2. Process view: Describes the behavior of the system’s processes (i.e., the system’s

behaviors);

3. Physical view: Presents the system’s physical implantation (i.e., where it’s implanted, how

many nodes it occupies, and what each node contains);

42 Francisco Pinto Sebastião

4. Implementation view: Focuses on the organization of the software modules;

5. Use case view: Describes the features of the system from a user perspective.

4.1 Level 1: Context

The following component diagram (cf. Figure 17) presents the designed system and its context,

namely the available interfaces and the systems that it depends on and the systems that depend

on it.

Figure 17 - Logical view of the context level of the system

Starting from the left, the point of entry to the system is through the REST API made available

by the API Gateway. The API Gateway consumes the Consul Server and each of the REST APIs

of the microservices from the System. The Consul Server provides a Service Discovery service

for the System’s microservices and the API Gateway, and it is through it that the microservices

communicate with each other and how the API Gateway communicates with the microservices.

The system consumes three external services besides the API Gateway: SQL Server Database,

PostgreSQL Database, and the Elastic Stack. The SQL Server Database and PostgreSQL Database

are where the data is persisted. The Elastic Stack is where the microservices logs and traces are

stored via Elasticsearch and APM Server. The Elastic Stack also consumes the microservices

REST API for health checks and has a Kibana UI available where logging, tracing, metrics and

other relevant information can be consulted.

Francisco Pinto Sebastião 43

4.2 Level 2: Containers

The following component diagram (cf. Figure 18) presents the system’s internal architecture

where we can observe the microservices (i.e., the containers) that compose the system and

how these interact. The DDD concepts of subdomain and bounded context can be observed

here since each component of the system represents a subdomain and bounded context

previously described in section 3.1.

Figure 18 - Logical view of the container level of the system

As observed:

• The Core Service component makes its REST API available internally for the other

components. This component is responsible for managing and manipulating all the business

components, users, bank accounts, utility accounts, and transactions. It follows the

Interface Segregation Principle (ISP) from the SOLID principles [59] where these features

were separated into smaller cohesive interfaces increasing its maintainability and adoption.

This component consumes the SQL Server to read and write data;

• The User Service component makes its REST API available externally. This component is

responsible for fetching user information and registering and logging users to the system.

It consumes the Core Service REST API which will validate user information when registering;

• The Transfer Service component makes its REST API available externally. This component is

responsible for fetching transfer information and registering new transfer transactions. It

consumes the Core Service REST API which will validate the bank accounts and the sender

account’s funds as well as register the new transaction if the information is valid when

registering new transfers;

44 Francisco Pinto Sebastião

• The Payment Service component makes its REST API available externally. This component

is responsible for fetching payments and registering new payment transactions. It

consumes the Core Service REST API which will validate the bank account, its funds, and the

utility account as well as register the new transaction if the information is valid when

registering new payments;

• All components except the Core Service consume the PostgreSQL Server where they read

and write data;

• All components consume the Consul Server where they register themselves and obtain the

service registry when sending requests to other components;

• All components consume the Elasticsearch and APM Server where they send their logs and

traces;

• Following the REST architectural style [60], the client-server architecture was adopted

between the presented REST APIs (i.e., the servers) and the components that consume

them (i.e., clients) as evidenced in the previous bullet points.

The following component diagram (cf. Figure 19) presents the Elastic Stack’s internal

architecture where we can observe the services (i.e., the containers) that compose it and how

these interact.

Figure 19 - Logical view of the container level of the elastic stack

As observed:

• The Elasticsearch Database component is available for internal and external consumption.

It’s responsible for storing data regarding the system’s logs, traces, and metrics;

Francisco Pinto Sebastião 45

• The APM Server component is available for external consumption. It’s responsible for

collecting tracing data that is sent to it. It consumes Elasticsearch where it writes the tracing

data in its indexes;

• The Heartbeat component is responsible for performing health checks. It consumes the

microservices REST API where it pings them in a specific path to verify their health and sends

that data to the Elasticsearch Database;

• The Metricbeat component is responsible for collecting the systems metrics. These are

metrics related to CPU Usage, RAM Usage, Inbound traffic, and Outbound traffic. It collects

this data from the infrastructure where the system is implanted and then stores it in the

Elasticsearch Database;

• The Kibana component makes its UI available externally. It is where we can consult all the

collected logs, traces, and metrics from the system via dashboards and other graphics.

The Elastic Stack is important since it allows the system to adhere to the monitoring and logging

method of the Secure-by-Design approach since these are necessary for detecting abnormal

patterns and log auditing of the system [56].

The following node diagram (cf. Figure 20) presents the systems containers implantation and

the used communication protocols (i.e., physical view).

Figure 20 - Physical view of the container level of the system

46 Francisco Pinto Sebastião

The systems containers are implanted in Docker containers [61]. Docker is a technology that

enables the creation, implantation, and execution of applications through the employment of

containers (i.e., isolated environments). With the creation of a container, an application can run

in an isolated manner on any machine with the same operating system [62].

The containers are running on Linux virtual machines on the student’s laptop. These share the

following resources:

• 6 logical CPUs, each correspondent to an Intel i7 8750H CPU core thread;

• 8 gigabytes (GB) of memory;

• 75 GB of storage.

Most interactions are executed via HTTP/S except for the databases and some of the Elastic

Stack’s containers where these are executed via TCP.

In the following sequence diagram (cf. Figure 21) the information flow between containers

regarding the execution of a fund transfer between bank accounts can be observed. This flow

can be described as a happy path and the flow with all possible paths/outcomes can be

consulted in Annex B (cf. Figure 80).

Figure 21 - Process view of the container level of the system regarding the happy path of

execution of a fund transfer

To explain:

Francisco Pinto Sebastião 47

1. The HTTP Client sends an HTTP POST request to the /api/v1/Transfer endpoint with the

necessary information;

2. The API Gateway requests the Transfer Service’s address to the Consul Server’s Service

Registry;

3. The Consul Server returns the address;

4. The API Gateway then forwards the request to the Transfer Service;

5. The Transfer Service will validate the sent JWT Token;

6. The Transfer Service will save the requested transfer with the processing status in the

PostgreSQL Server database;

7. The Transfer Service requests the Core Service’s address to the Consul Server’s Service

Registry;

8. The Consul Server returns the address;

9. The Transfer Service sends an HTTP POST request to the Core Service to execute the fund

transfer with the necessary information;

10. The Core Service validates the sent JWT Token;

11. The Core Service queries the SQL Server database for the given bank accounts;

12. The Core Service validates if the sender’s bank account has the necessary funds to execute

the transfer;

13. The Core Service will then update the bank accounts’ balance with the given amount;

14. The Core Service registers the transaction in the SQL Server database;

15. The Core Service responds to the Transfer Service with an HTTP 200 OK response with the

transaction number and a success message;

16. The Transfer Service takes the received transaction number, adds it to the transfer as a

reference, and updates it with success status in the PostgreSQL Server database;

17. The Transfer Service responds to the API Gateway with an HTTP 200 OK response with the

transaction number and success message;

18. The API Gateway forwards the response to the HTTP Client.

The Elastic Stacks containers are not represented in the diagram above due to the complexity

and size it would introduce but it can be assumed that all actions (i.e., traces) and logs are sent

to the APM Server and Elasticsearch database.

4.3 Level 3: Components

This section presents the architecture of each of the system’s containers. These are presented

according to the C4 model, which means the internal components and how these relate.

48 Francisco Pinto Sebastião

4.3.1 Core Service

This container is the most complex in terms of responsibility as it’s seen as the source of truth

for the system’s features that are executed by the other containers (i.e., user, bank account,

and utility account information).

The following component diagram (c.f. Figure 22) presents the internal components of the Core

Service and how these interact internally and externally.

Figure 22 - Logical view of the component level of the Core Service container

Analyzing the diagram, the requests are received by the Presentation Service component that

contains the Controllers for each entity (i.e., user, accounts, and transactions) that will

coordinate the responses through the Application Service component. These are responsible

for interacting with the domain. This is done through the Data Repository component to access

the persisted data and Mappers – contained by the Application Service component – are

employed as intermediaries to map data between the Data Model and Domain Model

components that are called by Services – contained by the Application Service component. The

Infrastructure Crosscutting component contains logic that is transversal to all components such

as exceptions, guards, generic interfaces, and configurations. The Presentation Service

component also consumes the external services Elasticsearch and APM Server to send its logs

and traces, respectively.

Francisco Pinto Sebastião 49

To better understand the functioning of the architectural design, the following sequence

diagram (cf. Figure 23) presents the information flow regarding the fetching of user information.

Figure 23 - Process view of the component level of the Core Service regarding fetching user

information

By analyzing the diagram, we can conclude that the information flow fits the description of the

previous component diagram (cf. Figure 22), which means:

1. The HTTP Client sends an HTTP GET request to consult a User with the Identification

Number 1;

2. The Controller receives this request and asks the Service for the requested User;

3. The Service asks the Repository for the User;

4. The Repository asks the SQL Server Database for the User;

5. The SQL Server Database returns something;

6. The Repository returns that to the Service;

7. The Service performs a null check on what it received;

8. If the User is valid then it calls the mapper to map the User;

9. The Mapper maps the User from a Data Model User to a Domain Model User;

10. The Mapper returns the mapped User to the Service;

11. The Service returns the mapped User to the Controller;

12. The Controller returns an HTTP 200 OK response with the mapper User.

On the other hand, if it doesn’t pass the null check then:

A. The Service creates a new Entity Not Found Exception;

B. The Service throws it to the Controller;

50 Francisco Pinto Sebastião

C. The Controller catches the Exception and logs an error with the exception;

D. The Controller returns an HTTP 404 Not Found response.

Regarding the design itself, the Onion architectural style was adopted. Onion is a software

architectural style introduced in a series of publications by Jeffrey Palermo [63]. It has the goal

of facing other architectural style’s challenges (e.g., 3-Tier, N-Tier) and providing solutions to

common issues such as coupling and separation of interests. It contains a set of concepts that

lead to the construction of software with better testability, maintainability, and reliability in

infrastructures such as databases and services [64]. By looking at the design again it’s possible

to observe the four layers it suggests:

1. Domain model layer: the Data Model component;

2. Domain Services layer: the Domain Model component;

3. Applicational Services layer: the Application Service component;

4. Infrastructure layer: The Presentation Service, Infrastructure Crosscutting, and Data

Repository components.

Several software design patterns were considered. The adoption of these is important during

the development of a system since they promote modularity, code reusability, better code

readability, and better safety. The following patterns were adopted in this architectural design:

• Service Layer: a domain logic pattern that defines the boundary of an application with a

services layer that establishes a set of available operations and coordinates the

application’s response to each operation. It encapsulates the application’s business logic by

controlling its transactions and coordinating responses in its operations implementations.

The benefit of implementing this pattern is that it establishes an application’s common set

of available operations for various types of clients and coordinates the application’s

response [65].

o It was implemented to abstract the component’s applicational logic making it

responsible for managing interactions with the domain;

• Mapper: a data mapping pattern that establishes communication between two

independent objects that need to stay ignorant of each other. It may be possible to modify

the objects but to create dependencies between these is not intended. It acts as an insular

layer between two objects which controls the communication details among these without

them being aware [66].

o It was implemented to abstract the mapping of domain objects into data objects and

vice-versa;

• Strategy: a behavioral pattern that transforms a set of behaviors into objects making these

permutable inside the original context’s object. The original object (i.e., context) has a

reference to a Strategy object to which it delegates the behavior's execution. To switch how

the context executes its behaviors execution, other objects may replace the currently linked

Strategy object with another [67].

Francisco Pinto Sebastião 51

o It was implemented to abstract application logic into interfaces making it so that there

are no dependencies to the implementations. It allows the replacement of an interface’s

implementation for another with ease;

• Dependency Injection: a design pattern used to implement Inversion of Control (IoC). IoC

is a design principle to invert control in an Object-Oriented (OO) design with the purpose of

achieving low coupling among classes [68]. Dependency Injection allows the creation of

independent objects outside of a class and provides these to a class through various means.

It abstracts from the classes the process of creation and binding dependent objects on

which it depends. This promotes low coupling among components by not exposing the

code’s implementation and increases the code’s testability through the simulation of these

with mocks and behavior injection [69].

o It was implemented to inject classes with their necessary dependencies making these

not dependent on implementation, only on interfaces;

• Repository: an object-relational metadata mapping pattern that serves as a mediator

between domain and persistence (i.e., database) by using a collection-like interface to

access the domain’s objects. A system with a complex domain model benefits from a layer

that isolates domain objects from persistence access details. Conceptually, it encapsulates

a set of persistent objects on the database and the operations performed on them,

providing a more OO view of the persistence layer [70].

o It was implemented to abstract the persistence layer and its access.

• Service Registry: “(..) a design pattern commonly used in microservice architecture to

enable service discovery and dynamic load balancing. The microservices register

themselves with a service registry which acts as a central repository for service

metadata”[71].

o It was implemented to enable interaction between services and external requests from

the API Gateway via Consul.

4.3.2 Other services

The other containers (i.e., User Service, Transfer Service, and Payment Service) follow the same

architectural design with the difference between them being the entity they represent and

manage. Their architectural design is very similar to the Core Service container’s architectural

design and follows the same design patterns.

The following component diagram (cf. Figure 24) presents the architectural design of the

Payment Service container (i.e., its internal components and how they relate).

52 Francisco Pinto Sebastião

Figure 24 - Logical view of the component level of the Payment Service container

By analyzing it, it can be noted that it's indeed similar to the Core Service container’s

architectural design. It follows the same logic as the Core Service with the exception being that

it interacts with the Consul Server to get the Core Service address to then request it to validate

payments so that it can execute and register these. Regarding the consultation of payments, it

does not interact with the Core Service as it queries its database (i.e., PostgreSQL Database).

To better understand this difference in the information flow, the following sequence diagram

(cf. Figure 25) can be observed regarding the execution of a new payment. The diagram only

represents the happy path of this process since its complexity and size increase significantly

with all paths. Regardless, the sequence diagram with all paths can be consulted in Annex B (cf.

Figure 81).

Figure 25 - Process view of the container level of the Payment Service container regarding

payment execution with only the happy path

Francisco Pinto Sebastião 53

By analyzing the diagram, we can conclude that the information flow fits the description of the

previous component diagram (cf. Figure 24), which means:

1. The HTTP Client sends an HTTP POST request to process a new Utility Payment;

2. The Controller receives this request and asks the Service to process this new Utility Payment;

3. The Service creates a new Utility Payment with the processing status;

4. The Service asks the Repository to add this new Utility Payment;

5. The Repository adds it to the PostgreSQL Server database;

6. The Service asks the Client to execute the Utility Payment;

7. The Client asks the Consul Server for the Core Service’s address;

8. The Consul Server returns the address;

9. The Client sends an HTTP POST request to the Core Service to execute the Utility Payment;

10. The Core Service returns a response;

11. The Client deserializes the response and returns it to the Service;

12. The Service null checks the response;

13. Since the response is valid it will update the Utility Payment status to success and add the

transaction reference to it;

14. The Service asks the Repository to update the Utility Payment;

15. The Repository updates the Utility Payment on the PostgreSQL Server database;

16. The Service returns a response with a success message and transaction reference to the

Controller;

17. The Controller returns this response to the HTTP Client.

4.4 Level 4: Code

Knowing the high complexity of the business model, this section only presents the fine-grain

design of the Transaction-related components of the Core Service container and the Transfer

Service container components. The DDD concept of ubiquitous language application is noticed

here since classes and their methods in the different layers are named according to the entity

these represent.

54 Francisco Pinto Sebastião

4.4.1 Transaction-related components of the Core Service

The following class diagram (cf. Figure 26) presents the classes that compose the Transaction-

related components of the Core Service container and their dependencies.

Figure 26 - Class diagram of the class level referring to the Transaction-related components of

the Core Service container

Analyzing it from the top:

• The TransactionController:

o Contains two endpoints. The first, FundTransfer, executes a fund transfer between bank

accounts and returns a message and the transaction reference, and the second,

UtilityPayment, executes a utility payment between a bank account (i.e., user account)

Francisco Pinto Sebastião 55

and a utility account (i.e., provider account) and returns a message and the transaction

reference;

o Depends on the ITransactionService and ILogger interfaces, and the

FundTransferRequest, UtilityPaymentRequest, and TransactionResponse classes.

• The ILogger interface sets multiple behaviors since it’s provided by .NET but for this context,

only one – Log – is employed;

• The Logger object is injected by .NET into the TransactionController class;

• The ITransactionService interface sets two behaviors, FundTransfer and UtilityPayment;

• The TransactionService class:

o Implements the ITransactionService interface (i.e., its behaviors) and is injected in the

TransactionController class;

o Depends on the ITransactionRepository, IAccountService, and IBankAccountRepository

interfaces and the FundTransferRequest, UtilityPaymentRequest, and

TransactionResponse classes.

• The IAccountService interface sets three behaviors, GetBankAccountAsync,

GetUtilityAccountByNameAsync, and GetUtilityAccountByIdAsync;

• The AccountService class:

o Implements the IAccountService interface (i.e., its behaviors) and is injected in the

TransactionService class;

o Depends on the IUtilityAccountRepository, IBankAccountRepository,

IUtilityAccountMapper, and IBankAccountMapper interfaces and BankAccount and

UtilityAccount classes.

• The IUtilityAccountMapper and IBankAccountMapper interfaces extend the IMapper

interface;

• The IMapper interface sets two behaviors to map the state between domain objects (i.e.,

classes with a green fill) and data objects (i.e., classes with a blue fill), Map and Map where

the difference is one returns a single object, and the other a set of objects;

• The BankAccountMapper and UtilityAccountMapper classes:

o Implement the IBankAccountMapper and IUtilityAccountMapper interfaces respectively,

and are injected in the AccountService class;

o Depend on the two BankAccount classes and the two UtilityAccount classes respectively.

• The IUtilityAccountRepository and IBankAccountRepository set two behaviors each,

GetByProviderName and GetByIdAsync, and GetByNumberAsync and Save, respectively;

• The UtilityAccountRepository class:

o Implements the IUtilityAccountRepository interface and is injected in the

AccountService Class;

o Depends on the FinanceCoreDbContext class.

• The BankAccountRepository class:

o Implements the IBankAccountRepository interface and is injected in the AccountService

and TransactionService classes;

o Depends on the FinanceCoreDbContext class.

56 Francisco Pinto Sebastião

• The ITransactionRepository interface sets the Save behavior;

• The TransactionRepository class:

o Implements the ITransactionRepository interface and is injected in the

TransactionService class;

o Depends on the FinanceCoreDbContext class.

• The DbContext interface:

o Belongs to the ORM EF Core;

o Set three methods, OnModelCreating, OnConfiguring, and SaveChangesAsync. The first

is to map the classes/data objects and the persistence so that EF Core may generate their

relational schema. The second has to configure the persistence access (i.e., type of

persistence, where it is found, etc.). The third has the objective of permanently saving

state changes in the persistence.

• The FinanceCoreDbContext class:

o Implements the DbContext interface and is injected in the BankAccountRepository,

UtilityAccountRepository, and TransactionRepository classes;

o Depends on the Transaction, User, UtilityAccount, and BankAccount classes so that it

can map them and access their tables in the persistence (i.e., database).

• The BankAccount, UtilityAccount, Transaction, and User classes are presented as described

in section 3.1:

o BankAccount: Contains 8 attributes. An identifier (i.e., Id), an account number (i.e.,

Number), an account type (i.e., Type), a status (i.e., Status) – that indicates if the account

is active, blocked, or pending –, the available balance (i.e., AvailableBalance), the actual

balance (i.e., ActualBalance), and the transactions associated (i.e., Transactions);

o UtilityAccount: Contains 3 attributes. An identifier (i.e., Id), an account number (i.e.,

Number), and the provider’s name (i.e., ProviderName);

o Transaction: Contains 5 attributes. An identifier (i.e., Id), the transacted amount (i.e.,

Amount), the associated bank account (i.e., BankAccount), the transaction type (i.e.,

Type) – that is if it’s a transfer or a payment –, and a reference number (i.e.,

ReferenceNumber);

o User: Contains 5 attributes. An identifier (i.e., Id), the first name of the user (i.e.,

FirstName), the last name of the user (i.e., LastName), the user’s email (i.e., Email), and

its identification number (i.e., IdentificationNumber).

Francisco Pinto Sebastião 57

4.4.2 Transfer Service components

The following class diagram (cf. Figure 27) presents the classes that compose the Transfer

Service container and their dependencies.

Figure 27 - Class diagram of the class level of the Transfer Service container components

Analyzing it from the top:

• The FundTransferController class:

o Contains two endpoints. GetTransfers – to obtain all existent transfers – and

ProcessTransfer – that receives a transfer request to process;

o Depends on the IFundTransferService interface, and the FundTransferRequest and

FundTransferResponse classes.

• The IFundTransferService interface sets two behaviors, Get and ProcessTransfer;

• The FundTransferService class:

o Implements the IFundTransferService interface and is injected in the

FundTransferController class;

58 Francisco Pinto Sebastião

o Depends on the ICoreServiceClient, IFundTransferRepository, and IFundTransferMapper

interfaces, and FundTransferRequest, FundTransferResponse, AccountResponse, and

both FundTransfer (i.e., domain and data) classes.

• The ICoreServiceClient interface sets two behaviors, ExecuteTransfer and GetAccount;

• The CoreServiceClient class:

o Implements the ICoreServiceClient interface and is injected in the FundTransferService

class;

o Depends on the HttpClient, AccountResponse, FundTransferRequest,

FundTransferResponse, and AccountResponse classes.

• The IFundTransferMapper interface extends the IMapper interface that sets two behaviors

to map the state between domain objects (i.e., classes with a green fill) and data objects

(i.e., classes with a blue fill), Map and Map where the difference is one returns a single

object, and the other a set of objects;

• The FundTransferMapper class:

o Implements the IFundTransferMapper interface and is injected in the

FundTransferService class;

o Depends on both FundTransfer classes.

• The IFundTransferRepository interface sets three behaviors, Get, Save, and Update;

• The FundTransferRepository class:

o Implements the IFundTransferRepository interface and is injected in the

FundTransferService class;

o Depends on the FinanceTransferDbContext class.

• The DbContext interface:

o Belongs to the ORM EF Core;

o Set three methods, OnModelCreating, OnConfiguring, and SaveChangesAsync. The first

is to map the classes/data objects and the persistence so that EF Core may generate their

relational schema. The second has to configure the persistence access (i.e., type of

persistence, where it is found, etc.). The third has the objective of permanently saving

state changes in the persistence.

• The FinanceTransferDbContext class:

o Implements the DbContext interface and is injected in the FundTransferRepository class;

o Depends on the FundTransfer class so that it can map it and access its tables in the

persistence (i.e., database).

• The FundTransfer class is presented as described in section 3.1:

o Contains 6 attributes. An identifier (i.e., Id), a transaction reference (i.e.,

TransactionReference), a status (i.e., Status) – that if a transfer is pending, processing,

successful, or failed –, the sender’s account number (i.e., FromAccount), the receiver’s

account number (i.e., ToAccount), and the transaction amount (i.e., Amount).

Francisco Pinto Sebastião 59

4.5 Database

Regarding the database design, a code-first approach was adopted with the employment of the

object-relational mapper (ORM) Entity Framework Core (EF Core). The entities were designed

through the adoption of the OO paradigms (i.e., classes), and the relational schema was

generated automatically through EF Core.

4.5.1 Core Service

The following entity-relationship (ER) model (cf. Figure 28) presents the entities that are in the

Core Service container and persisted in the SQL Server database.

Figure 28 - Entity-Relationship model of the Core Service container

When comparing the tables (i.e., entities) of the model with the domain classes in the class

diagram in the previous section (cf. Figure 26) it is noted that these are virtually identical. That

is the result of the class mapping by EF Core in the relational schema that can be observed in

the model above.

60 Francisco Pinto Sebastião

Four entities can be observed by analyzing the model:

• Users:

o Composed by an (i) unique identifier of the type uniqueidentifier (i.e., GUID/UUID) that

serves as the primary key, a (ii) first name, (iii) last name, and (iii) email of the type

nvarchar, and an (iv) identification number of the type nvarchar since it can be

alphanumeric;

o Possesses a one-to-many relationship with Bank Accounts.

• Bank Accounts:

o Composed by an (i) unique identifier of the type uniqueidentifier that serves as the

primary key, a (ii) user identifier to whom the bank account belongs of the type

uniqueidentifier and is a foreign key, an (iii) account number of the type nvarchar, a (iv)

status of the account that indicates if it’s active, blocked, or pending of the type

nvarchar, the (v) type of account that indicates if it’s a fixed, savings, or loan account of

the type nvarchar, and the (vi) available balance and (vii) actual balance of the account

of the type decimal;

o Possesses a many-to-one relationship with Users and a one-to-zero-or-more

relationship with Transactions.

• Transactions:

o Composed by an (i) unique identifier of the type uniqueidentifier, and the (ii) bank

accounts’ primary key that is a foreign key and composes the primary key with the

unique identifier, the (iii) transaction amount of the type decimal, the (iv) reference

number of the transaction of the type nvarchar, and the (v) type of transaction that

indicates if it’s a fund transfer or a utility payment of the type nvarchar;

o The unique identifier is generated by the Core Service and is shared by transactions that

are of the fund transfer type in order to identify the same transaction for both accounts.

That is also why the bank account’s primary key is part of the composed primary key as

it allows for both records to have the same unique identifier;

o Possesses a zero-or-more-to-one relationship with Bank Accounts.

• Utility Accounts:

o Composed by an (i) unique identifier of the type uniqueidentifier, the (ii) provider name

of the type nvarchar, and an (iii) account number of the type nvarchar.

All unique identifiers except the Transactions are automatically generated by the database that

are assigned when inserting new records.

Francisco Pinto Sebastião 61

4.5.2 Other services

The following entity-relationship (ER) model (cf. Figure 29) presents the entities that are in the

User Service, Transfer Service, and Payment Service containers and are persisted in the

PostgreSQL Server database.

Figure 29 - Entity-Relationship model of the User Service, Transfer Service, and Payment

Service containers

Comparing the Fund Transfers table (i.e., entity) with the domain class in the class diagram in

the previous section (cf. Figure 27) confirms that these are virtually identical. This is the result

of the class mapping by EF Core in the relational schema that can be observed in the model

above. The same can be affirmed for the other entities in spite of not being presented in a class

diagram.

62 Francisco Pinto Sebastião

Three entities can be observed in the model above:

• Users:

o Composed by an (i) unique identifier of the type uuid that serves as the primary key, a

(ii) email of the type text, a (iii) password salt that is used to make the password harder

to crack of the type text, the (iv) password that is hashed to be encrypted of the type

text, an (v) identification number of the type text since it can be alphanumeric, and a

(vi) status that indicates if the user’s account is pending, active, or blocked of the type

integer;

• Fund Transfers:

o Composed by an (i) unique identifier of the type uuid that serves as the primary key,

the (ii) sender’s account number of the type text, the (iii) recipient’s account number of

the type text, the (iv) transaction amount of the type numeric, the (v) transfer’s status

that indicates if it’s processing, successful, or failed, of the type integer, and the (vi)

transaction’s reference number of the type text.

• Utility Payments:

o Composed by an (i) unique identifier of the type uuid that serves as the primary key,

the (ii) provider’s unique identifier of the type uuid, the (iii) payer’s account number of

the type text, the (iv) transaction amount of the type numeric, the (v) payment’s status

that indicates if it’s processing, successful, or failed, of the type integer, the (vi)

payment’s reference number that is supplied by the payment request of the type text,

and the (vii) transaction identifier that is received by the Core Service of the type text.

All unique identifiers are automatically generated by the database that are assigned when

inserting new records. The reason why the column types are different from the ones in the Class

Service is due to the database being different (i.e., PostgreSQL) from the one that is being used

in the Core Service (i.e., SQL Server).

4.6 Summary

This chapter presented and described:

• The design choices of the solution in different granularities were complemented by

different views of them, thanks to the adoption of the C4 model, which allowed in the

form of diagrams to have a clear vision of the interactions and necessary precautions

to adopt for the development of the solution;

• The database design presented all persisted classes in the different databases.

Francisco Pinto Sebastião 63

5 Technologies

This section describes the adopted technologies for the development of the system and its

dependencies.

5.1 Adopted technologies

Various technologies were adopted to develop this system. The latest stable versions of these

were selected which allows to adhere the patch management method of the Secure-by-Design

approach as its important to maintain the system’s components up to date [56]. Table 9

enumerates the adopted technologies.

Table 9 - Adopted technologies

Component Technologies

System’s services • .NET

• C#

• Serilog

• Elastic Common Schema

• Entity Framework Core

• Steeltoe

• Swashbuckle

• Elastic APM

API Gateway • The same technologies as the System’s services

• Ocelot

Service discovery • Consul

Database • Microsoft SQL Server

• PostgreSQL Server

• Elasticsearch

Logging, monitoring, tracing, and
observability

• Kibana

• APM Server

• Metricbeat

64 Francisco Pinto Sebastião

Component Technologies

• Heartbeat

An introduction to each technology is found in following sections. Some are explained in more

detail than others, assuming that the reader has the necessary basic knowledge.

5.2 System’s services

This section describes the adopted technologies for the development of the system’s services.

5.2.1 .NET

.NET (dot NET), formerly known as .NET Core, is a software development open-source

multiplatform framework [72] that is developed and maintained by Microsoft [73]. It is seen as

the successor of the widely known .NET Framework [74]. It has the development of services,

websites, and console applications as its goal [72]. It fully supports C#, Visual Basic, and F# as

its main programming languages [75].

This framework was adopted for the development of the system and the API Gateway due to

the fact that its multiplatform, is widely supported (i.e., has a massive community), has rich

documentation, and is the framework that the student has most experience with.

5.2.2 C#

C# (C Sharp) is a multiparadigm programming language with a strong type system that can be

utilized for imperative, declarative, functional, generic, OO, and component-oriented

programming. Its purpose is to be a simple, modern, and general-purpose OO programming

language [76].

This language was adopted for the development of the system and the API Gateway.

5.2.3 Serilog

Serilog is a diagnostic logging library for .NET applications. It runs on all .NET platforms, is easy

to set up, and has a clean API. It provides robust support for structured logging, particularly

when instrumenting complex, distributed, and asynchronous applications and systems. It

supports diagnostic logging to files, the console, and many other outputs [77].

This library was adopted to better structure the system’s logs on the console and to send these

to the Elasticsearch database, through an Elasticsearch sink (i.e., writer) provided by Serilog [78].

Francisco Pinto Sebastião 65

5.2.4 Elastic Common Schema

Elastic Common Schema (ECS) is an open-source specification developed with support from the

Elastic user community. It defines a common set of fields to be used when storing event data in

Elasticsearch, such as logs and metrics that can then be consulted on Kibana [79]. ECS has a

collection of formatters for .NET logging libraries that are used to format log events according

to their specification, one of which is Serilog [80].

ECS was adopted to format log events being written from Serilog into Elasticsearch with its

format/specification.

5.2.5 Entity Framework Core

Entity Framework Core (EF Core) is a light, extensible, and multiplatform open-source ORM

framework. It allows for .NET developers to work with databases using .NET objects by providing

a data persistence access layer thus eliminating the need to write a lot of database access code

that normally would have been written otherwise [81].

EF Core was adopted to implement the data persistence access layer and to perform the

relational mappings between the domain objects since it is standard in .NET development when

it comes to relational models.

5.2.6 Steeltoe

Steeltoe is a collection of libraries that help .NET developers build production-grade cloud-

native applications with externalized configuration, service discovery, circuit-breakers,

distributed tracing, application management, and more. It provides a seamless way to build,

configure, and run event-driven microservice applications and stream-based data processing

applications [82].

The service discovery library was adopted for the system and the API Gateway interactions,

specifically the library with Consul support.

5.2.7 Swashbuckle

Swashbuckle is Swagger tooling for APIs built with .NET. It generates API documentation

following the OpenAPI specification, providing an easy-to-use UI to explore that can test

operations directly from the API’s routes, controllers, and models. It is customizable, works in

any environment, and in any browser [83].

66 Francisco Pinto Sebastião

Figure 30 - Example of Swagger UI page

This tooling was adopted to document the system’s endpoints for ease of comprehension and

reading over each.

5.2.8 Elastic APM

Elastic Application Performance Monitoring (APM) is an APM system built on the Elastic Stack.

It allows the monitoring of software services and application in real-time by collecting detailed

performance information on response time for incoming requests, database queries, call to

caches, external HTTP requests, and more [84]. Elastic has a collection of libraries that allow the

set-up of APM agents in various languages, including .NET [85].

Elastic APM was adopted to automatically measure the system’s performance by and track its

errors.

Francisco Pinto Sebastião 67

5.3 API Gateway

This section describes the adopted technologies for the development of the API Gateway. Since

the majority of the technologies are the same as the system’s services, only Ocelot is described.

Ocelot is a .NET API Gateway. It’s aimed at .NET microservices or systems using service-oriented

architecture that need a unified point of entry into their system. It is composed of middlewares

that follow a specific order: it essentially manipulates external requests until these reach a

request builder middleware that maps them into internal requests that are sent to the

downstream services, and then maps the internal responses into external responses which are

sent to the client. It also contains more features such as caching, quality of service (i.e., circuit

breaker), service discovery, load balancing, rate limiting, and more [86].

Figure 31 - Example of an Ocelot API Gateway configuration with Consul [86]

Ocelot was adopted along with the features mentioned above to develop the API Gateway that

serves as the entry point to the system due to its ease of use and rich feature set.

5.3.1 Service discovery

This section describes the adopted technology for service discovery, Consul.

Service discovery is how applications and services locate each other on a network. It functions

through a central registry (i.e., service registry) that maintains a global view of addresses and

clients that connect to the central registry to update and retrieve addresses [87]. There are two

types of service discovery: client-side and server-side. Client-side service discovery is when

68 Francisco Pinto Sebastião

client applications obtain the location of the service instance by querying the service registry to

make a request to that service [88]. Server-side service discovery is when client applications

make a request via router (i.e., load balancer) that queries the service registry for the location

of the service instance to forward its request to [89].

Figure 32 - Example of a system with client-side service discovery [90]

Francisco Pinto Sebastião 69

Figure 33 - Example of a system with server-side service discovery [90]

Consul is a service networking solution that enables the management of secure network

connectivity between services across different environments and runtimes. It offers features

such as service discovery, service mesh, and traffic management [91].

Figure 34 - Consul UI

Consul is adopted for its service discovery feature and ease of use.

70 Francisco Pinto Sebastião

5.4 Database

This section describes the adopted technologies for persisting data (i.e., databases).

5.4.1 Microsoft SQL Server

Microsoft SQL Server (SQL Server) is a relational database management system (RDMS)

developed by Microsoft [92]. The main objective of an RDMS is to persist and return data when

queried [93]. SQL Server contains different editions for different needs [94].

The Express version of SQL Server was adopted for both local development and testing since it

only includes the database engine and is ideal for small applications [94]. It is used by the Core

Service for data persistence.

5.4.2 PostgreSQL Server

PostgreSQL is a powerful popular open-source RDMS developed by the University of California

at Berkley. It has a strong reputation for its architecture, reliability, data integrity, robust feature

set, extensibility, and a large, dedicated community [95].

PostgreSQL was adopted for both local development and testing. It is used by the User, Transfer,

and Payment services for data persistence.

5.4.3 Elasticsearch

Elasticsearch is the distributed search and analytics engine that is the core of the Elastic Stack.

It provides near real-time search and analytics for all types of data whether these are structured

or unstructured text, numerical data, or geospatial data. It can efficiently store and index it in a

way that supports fast searches. Other than data retrieval and information aggregation it allows

to discover trends and patterns in data. It supports a wide variety of use cases such as storage

and analysis of logs, metrics, and security event data, the usage of machine learning models to

automatically model the data’s behavior in real-time, and many more [96].

Elasticsearch was adopted to store logs, traces, and metrics from the system and the API

Gateway.

5.5 Logging, monitoring, tracing, and observability

This section describes the adopted technologies for logging, monitoring, tracing, and

observability of the system.

Francisco Pinto Sebastião 71

5.5.1 Kibana

Kibana is a UI that allows the visualization of Elasticsearch data and to navigate the Elastic Stack.

It allows us to analyze, monitor, and observe applications. It has features such as [97]:

• Elastic Observability: enables monitoring and applying analytics in real events happening

across environments. It can analyze log events, monitor performance metrics for the host

or container that it ran in, trace transactions, and verify overall service availability;

• Analytics: enables the search of data for hidden insights and relationships with queries and

filters, to create visualizations of data in many ways and perspectives with dashboards, to

use machine learning models to model the behavior of data to forecast unusual behavior

and perform outlier detection, regression, and classification analysis;

• Manage, monitor, and secure the Elastic Stack: enables to refresh, flush, and clear the

cache of indices, to define the lifecycle of an index as it ages, to roll up data from one of

more indices into a new, compact index, to replicate indices from a remote cluster to a local

cluster. It can detect and act on significant shifts and signals in the data such as memory,

CPU, and storage usage through email, Slack, and other 3rd party integrations. It allows to

organize content into spaces for different needs without impacting others. It provides a

range of security features such as logging in with 3rd party authentication providers – single

sign-on (SSO) providers –, role-based access to features, and audit logging to maintain

logging of who did what, when.

Figure 35 - Example of searching data through analytics in Kibana

72 Francisco Pinto Sebastião

Figure 36 - Example of consulting Elastic Observability overview on Kibana

Kibana was adopted to consult, visualize, analyze, and train machine learning models on logs,

traces, and metrics that were stored in Elasticsearch.

5.5.2 APM Server

Elastic APM is already described in section 5.2.8. The APM Server is where the data is sent from

the APM agents in the system and in the API Gateway, and then after processing and enriching

it, stores it in Elasticsearch.

Francisco Pinto Sebastião 73

5.5.3 Metricbeat

Metricbeat is part of the Beats, which is a collection of open-source data shippers that act as

agents to send operation data to Elasticsearch. Metricbeat specifically collects information on

systems metrics such as CPU, memory, disk usage, and network traffic. It also has modules for

collection metrics from services such as PostgreSQL, Prometheus, and many more [98].

Figure 37 - Example of metrics collected into a dashboard on Kibana

Metricbeat was adopted to collect, visualize, and analyze the entire infrastructure metrics (i.e.,

system, API Gateway, databases, and the Elastic Stack).

5.5.4 Heartbeat

Heartbeat is another data shipper from Beats that specifically collects information on systems

availability by periodically checking their status with a ping to check if the services that are load-

balanced are all available. It can also monitor with echo requests to check if a service is available,

with TCP to verify if an endpoint is sending and/or received a custom payment, or with HTTP to

verify if the services return the expected response (i.e., status code, response header, or body).

It also allows to verify if systems are acting according to their expected service level agreement

(SLA) levels [99].

74 Francisco Pinto Sebastião

Figure 38 - Example of uptime monitoring with information collected by Heartbeat on Kibana

Heartbeat was adopted to collect data on the system’s and API Gateway’s availability by pinging

them periodically.

5.6 Summary

This chapter presented and described:

• What were the adopted technologies for the development of the system and its

surrounding infrastructure accompanied by figures for better comprehension of some of

these as well as the justification of their choosing by the student.

Francisco Pinto Sebastião 75

6 Implementation

This chapter presents what technologies were adopted to develop the system, describes

particular development situations, and how the overall infrastructure was set up.

6.1 Particular situations

This section presents particular situations relevant to the developed system and the

surrounding infrastructure (i.e., Elastic Stack) where the implementation process and applied

technologies are described accompanied by code snippets for better comprehension.

6.1.1 Service Discovery

Setting up and running service discovery on the system was a relevant situation for the

implementation of the system. It’s what enables the system’s services to communicate with

each other and with the API Gateway for handling external requests, allowing the fulfillment of

all use cases.

As explained in section 5.3.1, Consul was employed for this role. A Consul image was used to

run instances of a Consul server to allow for the system and the API Gateway to register on and

query its registry to locate each other’s instances for further interaction amongst them. How

those instances were set up and started is presented in section 6.2.

After starting the Consul server it’s necessary for the system’s services and API Gateway to

register in its registry. For that process to happen Steeltoe’s Consul service discovery library

[100] (i.e., NuGet package [95]) was added for them to become clients of the Consul server. To

use this functionality, it’s necessary to add configurations to the system’s services and API

Gateway settings file (cf. Snippet 1) and then setup the discovery client through the startup

process (cf. Snippet 2).

76 Francisco Pinto Sebastião

Snippet 1 - Consul configuration on the User Service’s appsettings file

Analyzing the Consul configurations above, in a JSON format, indicates us that:

• Host: where the Consul server is hosted (i.e., it’s address) for the client to interact with;

• Discovery.HealthCheckUrl: the endpoint/path that the Consul server must ping to perform

health checks to the service;

• Discovery.ServiceName: the name that client wants to be known as and registered under

and to be aggregated with in the case of more instances;

• Discovery.IpAddress: the client’s address. This is an optional setting but necessary for local

development of the service when the Consul server is running in a container and needs to

reach the service outside the docker network;

• Discovery.PreferIpAddress: indicates if the clients should be reached by its IP address or its

hostname. It is set as false by default but was set to true in all services;

• Discovery.Port: the port exposed by the client that is to be registered.

Besides these configurations there are many more for other purposes such as tags to be

associated with the instance(s), or what scheme should be registered (i.e., HTTP or HTTP/S)

[101].

Francisco Pinto Sebastião 77

Snippet 2 - Service Discovery set up on the User Service's Program class

Analyzing the Program class above indicates to us that:

• The Steeltoe service discovery packages were imported and are necessary to be able to add

the service discovery functionality to the service (i.e., using block);

• The functionality is added by extending the host builder method with the

AddServiceDiscovery extension at the end with the option to specify that it’s a Consul client;

• The configurations that were presented in the previous are automatically loaded by the

host builder and passed through to the Consul client.

With the system’s services and API Gateway configured and set up they can register on the

Consul server’s registry and can now query it and begin interacting with each other. Steeltoe

offers that functionality as well through a client interface that is registered with the service

container that is inject in a HTTP client handler that intercept requests and evaluates the URL

to see if the host portion of the URL can be resolved by Consul’s service registry [102]. The

following snippet (cf. Snippet 3) presents how this is implemented in the User Service.

78 Francisco Pinto Sebastião

Snippet 3 – Implementation of discovery client and handler to interact with the core service

Analyzing the Core Service Client class above indicates to us that:

• The Steeltoe service discovery packages were imported and are necessary to be able to add

the client and handler functionality to the service (i.e., using block);

• The client is injected through the constructor which is then passed as an argument to

instantiate the discovery client handler, and then is passed as an argument to serve as the

HTTP Client’s handler with a false as a second argument that lets the HTTP Client know to

not dispose of the handler so that it can be reused;

Francisco Pinto Sebastião 79

• With the HTTP Client using the discovery handler, it can now perform requests to other

services by providing their name as the host since the Consul’s service registry will translate

it into an address so that the client can send its requests.

6.1.2 Logging, tracing, and metrics collection

How logs, traces, and metrics were collected is quite the relevant particular implementation

situation since it’s this data that is necessary for us to create machine learning jobs on Kibana

and to analyze, learn, predict, and receive alerts of the system on near real-time these are

trained and process data on a continual basis as data is collected.

As explained in sections 5.2 and 5.5, the system’s and API Gateway’s logs and traces are

collected by being sent from the adopted logging library – Serilog –, complemented by the

Elastic Common Schema (ECS) to format the logs, to the Elasticsearch server, and the Elastic

APM agent to the APM Server that handles the tracing data before sending it to the

Elasticsearch server as well. The metrics are collected from the infrastructure on which they run

(i.e., docker) by Metricbeat which also stores them in the Elasticsearch server. This reinforces

the adoption of the monitoring and logging method of the Secure-by-Design approach.

6.1.2.1 Log collection

To use Serilog with the ECS and its Elasticsearch sink it is necessary to add the necessary

configurations to the system’s services and API gateway on their host builder in the Program

class. This is presented in the following snippet (cf. Snippet 4).

80 Francisco Pinto Sebastião

Snippet 4 - Serilog configuration on host builder

Francisco Pinto Sebastião 81

Analyzing the Program class and host builder above indicates to us that:

• The necessary Serilog and ECS packages were imported (i.e., using block);

• Serilog is added through the AddSerilog extension method for the host builder and is

configured with the following:

o Group of variables that contain Elasticsearch server address, the HTTP Accessor to

enrich the logs with HTTP Context, and the text formatter configuration to map a

custom field (i.e., Event.Dataset) with the service name that is necessary for log

streaming and machine learning purposes. These are to be used in the configuration of

Serilog;

o Serilog’s configuration, which reads from the services configuration to see if there are

options that were added in the Startup class, enriches logs with log context, and HTTP

context with the previous HTTP Accessor, filters logs to exclude from two specific paths

as these are quite frequent and “pollute” the logs, writes the logs to the console so that

these can be observed in the console while in running locally from the IDE or from the

container logs, locally or remotely, and writes logs to Elasticsearch with the previous

address, custom text formatter configuration, to the index name with the service’s

name and basic connection configuration.

Serilog can also be configured from the appsettings configuration files as well, in which case it

would only need to read from the configuration and not have an extensive code-based

configuration that is presented above.

The logs can then be consulted by Elasticsearch index on Kibana through its Discover feature on

the Analytics tab. An example of consulting the user service can be observed in Figure 39.

82 Francisco Pinto Sebastião

Figure 39 - Consulting User Service logs in the Discover feature on Kibana

6.1.2.2 Traces collection

To configure and set up the APM agent in the service the first thing to do is to add its

configuration to the appsettings file (cf. Snippet 5), and then add it to the application builder in

the Startup class on the Configure method (cf. Snippet 6).

Snippet 5 - Elastic APM agent configuration in the appsettings file

Analyzing the configuration above indicates to us that:

• ServerUrl: the APM Server’s address, where the agent will send the collected traces and

associated metrics;

• TransactionSampleRate: the rate/percentage of traces to be sampled. The value is set

between 0.0 and 1.0 (i.e., 0% to 100%);

• ServiceName: the service’s name to be associated with the collected traces.

Francisco Pinto Sebastião 83

Snippet 6 - Elastic APM agent usage in the Startup class

Analyzing the snippet above indicates to us that:

• The Elastic APM agent package is imported (i.e., using);

• The APM agent is added to the application builder through the UseAllElasticApm extension

method, where the previously presented configuration is passed as an argument to be

loaded so that when the application starts it can begin collecting and sending traces and its

associated metrics to the APM server.

With the APM agent collecting and sending tracing data it is now possible to consult this

information through Kibana with different visualizations and information. Figures 30 through

33 present some of these. It is possible to consult:

• Overview of the collected data for the service (cf. Figure 40);

• Transaction-specific information, that can be segregated by request type (cf. Figure 41);

• System metrics that are collected at the time of the traces (cf. Figure 42);

• Service map that displays the transaction flow between the different services (cf. Figure 43);

• And more.

84 Francisco Pinto Sebastião

Figure 40 – User service APM overview tab

Figure 41 - User service APM transactions tab

Francisco Pinto Sebastião 85

Figure 42 - User service APM metrics tab

Figure 43 - User service APM service map tab

6.1.2.3 Metrics collection

How metrics are collected is different from the implementations above since it is not

“implemented” into the services. It is a separate Metricbeat instance that looks at docker,

collects a diverse set of metrics, and indexes these into Elasticsearch. The difference between

how Metricbeat and the APM agent collect this type of information is that Metricbeat collects

periodically while the APM agent only collects when there are transactions occurring.

86 Francisco Pinto Sebastião

To configure Metricbeat it’s necessary to create a YAML [96] file with specific settings (cf.

Snippet 7) that is copied to the image, in a Dockerfile, that will be used to raise a container. How

and where the container is raised will be presented in section 6.2.

Snippet 7 - Metricbeat.yml file

Analyzing the YAML file by setting indicates to us that:

• Output.Elasticsearch: where the Elasticsearch server is, and the authentication needed for

Metricbeat to send its data;

Francisco Pinto Sebastião 87

• Setup.Kibana: where the Kibana instance is, and the authentication needed for Metricbeat

to load its Kibana dashboards via Kibana API;

• Metricbeat.Autodiscover: a feature that allows tracking containers as they are started and

shut down since these are “moving targets” for the monitoring system. It uses providers to

know where to look, in this case, Docker.

• Metricbeat.Modules: modules are a large collection of known applications/services that

Metricbeat has dashboards for and a set of metrics that it can collect (i.e., Azure, Kafka,

PostgreSQL, etc.). The docker module is the only one enabled and it is configured to collect

metrics on the container, CPU, disk I/O, health check, memory, network, and general

information every 10 seconds to the docker daemon that is located under the hosts

configuration.

Once Metricbeat starts collecting information it can be consulted on Kibana. Metrics

observability provides two overviews:

• Inventory: where we can consult all containers whose metrics got collected, filter these,

look at specific metrics (cf. Figure 44), and have the option of consulting details of single

containers (cf. Figure 45);

• Metrics Explorer: where we can explore more types of collected metrics over a period of

time in a time graph (cf. Figure 46).

Figure 44 - Metrics Inventory overview of all the API Gateway instances CPU usage

88 Francisco Pinto Sebastião

Figure 45 - Metrics Inventory overview of a selected API Gateway container metrics

Figure 46 - Metrics Explorer overview of all the API Gateway instances average CPU usage

Francisco Pinto Sebastião 89

6.1.3 Machine learning job creation

As previously described in section 2.3.1.3, Elastic offers ML features that work seamlessly with

its stack. These are anomaly detection, outlier detection, regression, and classification. These

are all configurable through Kibana as presented in the next sections.

6.1.3.1 Anomaly detection

Regarding anomaly detection, it can also be easily set up from the different views on Kibana as

it is integrated with them with a pre-defined configuration (i.e., ML model) for each of them.

Figure 47 - Anomaly detection option in the Services view in the APM section of Observability

The view above (cf. Figure 47) presents the anomaly detection option in one of the sections of

the Observability feature of Kibana. What it does when selected is that it requests the user to

select one of the environments where the services run (e.g., Production, Development) and to

start. Its pre-defined configuration is to analyze transactions and to alert when transactions are

taking longer than expected by looking at the high mean of the transaction durations by

transaction type. This job after being created can be consulted in the anomaly detection tab of

the ML section of the Analytics feature as presented in Figure 48.

90 Francisco Pinto Sebastião

Figure 48 - Anomaly detection tab with the created ML job

Regarding the other types of default anomaly detection jobs:

• In the case of metrics, its default configuration is to create three jobs after selecting the

infrastructure (e.g., Host or Kubernetes pods). Each has the job of identifying unusual spikes

in a different metric (i.e., CPU, memory, and network);

• In the case of uptime, the default configuration for each monitor is to identify periods of

increased latency;

• In the case of logs, its default configuration is to detect anomalies in log entries by category

and in the long entry ingestion rate.

Other than default jobs, anomaly detection jobs can also be created manually via the “Create

job” option shown above. It allows the options presented in Figure 49.

Francisco Pinto Sebastião 91

Figure 49 - Anomaly detection job creation options

As inferred, there are a lot of options regarding anomaly detection, from “simple” jobs such as

Single Metric and complex jobs such as Advanced that can combine the other options and are

aimed at more specific and complex use cases, and it also allows to learn more about the

collected data through the Data Visualizer to identify fields for analysis with ML. Due to the

wide range of options, only the Single Metric job creation is presented. Creating a new anomaly

detection job is comprised of 5 steps:

1. Figure 50 Time range: selection of data for the job. The data could be selected from a

specific time interval or all of the available data. This is presented in Figure 50;

92 Francisco Pinto Sebastião

Figure 50 - Selection of time range for collected data for analysis in anomaly detection job

creation

2. Picking fields: selection of field for analysis. A field from the data is selected for analysis

along with what type of analysis (i.e., count, mean, distinct count, max, min, etc.), what the

bucket span is (i.e., frequency of analysis), and if the data should be sparsed (i.e., ignore

empty buckets). This is presented in Figure 51;

Figure 51 - Selection of field for analysis in anomaly detection job creation

Francisco Pinto Sebastião 93

3. Job detail configuration: inputting the job id, if it’s associated with a group of jobs, or

inputting a description. It has advanced settings such model plotting, generating

annotations when the model changes significantly, use of a dedicated Elasticsearch index,

and manually configuring the memory limit for the model. This is presented in Figure 52;

Figure 52 - Job details configuration of in anomaly detection job creation

4. Validation: the previous steps are validated by Kibana and indicate if the selections are okay

for the job or if there is any with something that could be improved. This is presented in

Figure 53;

Figure 53 - Job validation in the anomaly detection job creation

94 Francisco Pinto Sebastião

5. Summary: A summary of the job is presented before finalizing the creation process along

with the option for starting it right away. If this option is disabled, the job can be started

afterward from the jobs list. This is presented in Figure 54.

Figure 54 - Job summary in the anomaly detection job creation

6.1.3.2 Outlier detection, regression, and classification

Regarding the other three types of ML jobs, since these perform data frame analysis, they are

all configured under the same job creator (i.e., data frame analytics job creator). Unlike anomaly

detection, which also offers creation on Kibana views, this is the only way to create these jobs.

To create a data frame analytics job, we need to go to the data frame analytics tab that is

presented in Figure 48 and select the “Create job” button. After selecting which Elasticsearch

index to use, the next choice falls on the type of job we want (i.e., outlier detection, regression,

or classification). Since these are all similar in configuration, the classification job creation is

presented.

Creating a data frame analytics job is comprised of five steps:

1. Configuration: selection of job type, filtering of data by query if necessary, choosing of the

dependent variable (i.e., field for classification prediction), which other fields to include for

analysis, and what percentage of the data should be used for training the model. This is

presented in Figure 55 and Figure 56;

Francisco Pinto Sebastião 95

Figure 55 - Data frame analytics job creation

96 Francisco Pinto Sebastião

Figure 56 - Data frame analytics job creation included fields and training segment

2. Advanced options: further configure the model with feature importance values (i.e., which

fields have the largest impact on each prediction), custom prediction field name instead of

the default name that is the dependent variable, randomize seed for the random generator

used for picking data, the number of categories for the predicted probabilities to report to,

the model memory limit, the number of threads to be used for analysis, and

hyperparameters (e.g., lambda for multiplying leaf weights is loss calculation, maximum

number of decision trees, etc.). This is presented in Figure 57.

Francisco Pinto Sebastião 97

Figure 57 - Data frame analytics job creation additional options segment

3. Job details: to input the job id, description, and other options such as the destination index

have the same name as the job id, or the creation of an index pattern. This is presented in

Figure 58;

Figure 58 - Data frame analytics job creation job details segment

4. Validation: the previous steps are validated by Kibana and indicate if the selections are okay

for the job or if there is any with something that could be improved. This is presented in

Figure 59;

98 Francisco Pinto Sebastião

Figure 59 - Data frame analytics job creation validation segment

5. Create: all that’s left is to create the model and start the job. It can be started immediately

or afterward from the jobs list. This is presented in Figure 60.

Figure 60 - Data frame job creation create segment

6.2 Infrastructure setup

This section presents how the overall infrastructure where the system and other services,

particularly the Elastic Stack, ran was set up accompanied by code snippets for better

comprehension. The other infrastructure components (i.e., PostgreSQL Server, SQL Server, and

Consul) were started from available official images with minimal configuration as

extensive/specific configurations were not necessary.

Francisco Pinto Sebastião 99

6.2.1 System

From what can be inferred from the previous chapter, Docker was used to run instances of the

system on containers. For each component (i.e., service) of the system a Dockerfile and a

docker-compose file were created to build an image and to start containers. All Dockerfiles and

docker-compose files are similar, so the ones presented in this section represent all. The

Dockerfile is presented in segments to explain the image-building process.

Snippet 8 - Dockerfile build environment restore segment

The above segment can be summarized in 3 steps: Defines the .NET SDK [97] 7.0 image to be

used as the build environment and the work directory where the process will occur; Copies all

the solution’s projects .csproj files. These declare each project’s dependencies; Run a couple of

commands. First to generate a self-signed certificate to enable HTTPS and second to restore the

dependencies of each project.

100 Francisco Pinto Sebastião

Snippet 9 - Dockerfile build environment build segment

After restoring the solutions dependencies, it copies everything else, then changes the working

directory to the presentation service project (i.e., the solutions main project) and runs the

publish command with the release flag. This means that it will output a production-ready

application.

Snippet 10 - Dockerfile runtime environment entry-point segment

Finally, it moves to the runtime environment where it defines the aspnet 7.0 image, a smaller

optimized runtime image aimed at running .NET application in a production environment,

Francisco Pinto Sebastião 101

changes the working directory to the initial one, copies the generated output from the previous

segment to the current directory and the generated self-signed certificate to a specific directory,

exposes port 8000 and sets the entry-point for the image, which is the presentation service DLL.

With the image built, the docker-compose file (cf. Snippet 11) that is used to run the image

declares the following:

• Docker-compose version to use. Version 3.8 is the one used, the most recent;

• The services it will raise. It declares the Core Service by specifying:

o Image: the latest image of the Core Service;

o Container name: The name to assign to the container;

o Build: Where to build the image if it hasn’t been built. In this case, the same

directory as the docker-compose file and the Dockerfile to run;

o Ports: What ports to expose externally and the internal port to connect to;

o The network mode: specifies bridge, which is the docker host network, meaning it

can interact with other containers in the docker network;

o Environment variables: specifies values to inject/override in the image’s settings

such as the connection string to the SQL Server.

102 Francisco Pinto Sebastião

Snippet 11 - Docker-compose file

6.2.2 Elastic stack

Regarding the Elastic Stack, each of its services requires specific configurations. For that, a YAML

file and Dockerfile were created for each. Finally, a docker-compose file where these were all

declared was built.

6.2.2.1 Services’ configuration

Metricbeat’s YAML file was already presented in section 6.1.2.3 so it’s not presented here.

Snippets 12 through 15 present the remaining services' YAML files.

Francisco Pinto Sebastião 103

Snippet 12 - Elasticsearch YAML file

Observing the Elasticsearch configuration, it defines the cluster name, and then the address to

bind itself to, configures the license to basic that allows to enable basic X-Pack [98] features,

enables security and authentication with API Key, as well as monitoring data collection of

Elasticsearch. Finally, it enables CORS [99] so that Elasticsearch can be consulted via browser.

Snippet 13 - Kibana YAML file

Observing the Kibana configuration, it defines the server’s name, the server host/address to

bind itself to, which Elasticsearch hosts to query – in this case, the local instance – and its

authentication information, which enables Elasticsearch monitoring that is specific to instances

running in containers and sets the encryption keys that are necessary for reporting and saving

encrypted objects (i.e., dashboards, visualizations, alerts, actions, and advanced settings) in a

dedicated, internal Elasticsearch index.

104 Francisco Pinto Sebastião

Snippet 14 - APM Server YAML file

Observing the APM Server configuration, it defines the address and port to bind itself to,

enables ILM2 setup and overwrite which allows the creation of unmanaged custom indices,

enabled the template loading and defines the template’s name and pattern (i.e., where the data

will be stored). Finally, it defines the Elasticsearch host to send its data to and its authentication

information.

2 ILM – Index Lifecycle Management – are policies that have the responsibility to manager indices
according to specific performance, resiliency, and retention requirements.

Francisco Pinto Sebastião 105

Snippet 15 - Partial Heartbeat YAML file

Observing the Heartbeat configuration, it defines the Elasticsearch host to send its data to and

its authentication information, the Kibana host to load its dashboards via Kibana API, and the

monitors to execute. The snippet above only presents one monitor since the others are similar.

The monitors are of HTTP type, have an ID and name for each of the system’s services, ping at

the health endpoint of each expecting an HTTP 200 response status, and are executed every 10

seconds.

6.2.2.2 Docker configuration

Regarding Dockerfiles, only one is presented below to represent all since they are all similar.

Snippet 16 - Elasticsearch Dockerfile

What all the Dockerfiles essentially do is declare the image and copy the YAML file to the

image’s configuration directory so that when a container is started it loads the correct settings.

106 Francisco Pinto Sebastião

Snippets 17 through 20 present the docker-compose network and volumes, two of the services

with the most configuration (i.e., Elasticsearch and Metricbeat), and one service to represent

the other three since these are all similar.

Snippet 17 – Docker-compose network and volume configuration

The docker-compose defines a network that operates on the bridge driver, meaning that it can

interact with other services (i.e., containers) other than the ones it declares, and two volumes,

one for Elasticsearch and one for Metricbeat.

Snippet 18 - Elasticsearch configuration in the docker-compose file

Francisco Pinto Sebastião 107

Elasticsearch, like the other services, defines that its build/image (i.e., its Dockerfile) is in the

elasticsearch folder located in the same directory as the docker-compose file, binds the

previously declared volume to the images data folder, two ports, defines environment variables

for its initial and maximum heap size, password, and discovery type (i.e., if Elasticsearch should

be multi-node or single-node), and bind itself to the previously defined network.

Snippet 19 - Metricbeat service configuration on the docker-compose file

Metricbeat defines its user, commands to log errors, to disable the configuration file permission

checks (i.e., allows for mounting configuration that are not owned by the root), sets the

108 Francisco Pinto Sebastião

mounting point of the host’s filesystem (i.e., necessary for monitoring the host from within a

container), binds a set of folders related to host necessary for monitoring, not shown above,

the docker daemon for monitoring all containers, the previously declared volume to its data,

declares the port, binds itself to the previously defined network, and which of the declared

services it depends on to start.

Snippet 20 - Kibana configuration on the docker-compose file

Kibana and the other services only define their respective ports, the network, and what other

services they depend on (i.e., in this case, Elasticsearch).

6.3 Summary

This chapter presented and described:

• Which technologies were adopted for the implementation of the system and the

surrounding infrastructure while referencing for more information about these on the

Annexes;

• Particular implementation situations for the system and infrastructure with the

implementation process complemented by code snippets and screenshots of Kibana;

• How the overall infrastructure was set up with code snippets.

Francisco Pinto Sebastião 109

7 Evaluation

This chapter details the process of evaluation to be conducted ensuring that the prototype falls

in line with the objectives. To fulfill this, investigation hypotheses associated with the problem

are formulated, the indicators and information sources are presented, the specification of the

evaluation methodology used to assess the prototype, what tests were developed and the

importance of Continuous Integration and Continuous Deployment/Development (CI/CD) in

evaluating systems, and how the experimentation was setup. Finally, an assessment of the

system is made.

7.1 Investigation hypothesis

A hypothesis is a possible answer to a research question. It is a hunch or a guess to determine

“what is going on”. It is assessed for potential approval or rejection. In the case of approval,

then that hunch was correct [103].

The following formulated investigation hypothesis should meet the RQs listed in section 1.3.

These are:

• H.1: The proposed architecture offers high levels of operational resilience;

• H.2: The usage of AI methods in conjunction with the proposed architecture provides a

great advantage in its security.

The goal of these hypotheses is to prove that the proposed microservice architecture, in this

context, presents a great number of benefits when combined with the usage of AI methods to

make it more robust and secure.

It is to be noted that these hypotheses are linked with the initially formulated research

questions found in section 1.3: H.1 aims to answer RQ.1, and H.2 aims to answer RQ.2.

110 Francisco Pinto Sebastião

7.2 Indicators and information sources

From the previous section, two aspects can be taken to be evaluated with these being specific

characteristics.

The two characteristics to be evaluated are the resilience and security offered by the prototype

when combined with AI methods. Both aspects will be evaluated following the Goals, Questions,

Metrics (GQM) methodology.

These aspects were chosen as indicators due to the fact of being directly related to the

investigation hypotheses previously formulated.

The first, resilience, evaluates the overall robustness of the proposed prototype and seeks to

confirm hypothesis H.1, while the latter, security, verifies how much more secure the prototype

is, and seeks to confirm hypothesis H.2.

7.3 Goals, Questions, Metrics

The GQM methodology is a proven method for implementing goal-oriented metrics throughout

a software project. It starts by defining the goals to achieve, and then clarifying the questions

to answer with the data to collect. Finally, mapping business objectives and goals to data-driven

metrics allows the formation of a holistic picture of the environment created [104].

The two characteristics can be associated with a few quality attributes (QA) for an architectural

style (AS). These QAs are the ones that will be used by the GQM method. The QAs will be

measured following the dynamic analysis technique to evaluate its metrics. This technique was

established by [105] to connect QAs with measurable metrics, and it needs the execution of the

software to be assessed so it can identify gaps and flaws in the software’s behavior and logic.

The resilience characteristic is linked with the concept of operational resilience, presented in

section 1.1.3. A resilient system is characterized by the QAs of availability, performance, and

scalability, since it needs to be able to recover quickly when failing over or experiencing fault,

maintaining its high availability and service at all times (i.e., handling user/external requests)

with acceptable response times and the efficient use of system resources, and also to be able

to scale up and down according to the system’s needs (i.e., when experiencing significant

increase or decrease of traffic) [105], [106]. In Table 10, the metrics of each QA related to

resilience can be observed.

Table 10 - Metrics by quality attributes related to resilience [105], [106]

Quality
Attribute

Metric Description

Availability Uptime percentage The proportion of time the microservice is accessible
within a required period. Most of the contemporary

Francisco Pinto Sebastião 111

Quality
Attribute

Metric Description

cloud platforms Service Level Agreements (SLA)
guarantee availability of 99.9999% or above

Successful
execution rate

The ability of a service provider to successfully fulfil
the requests within a given period

Fault detection To identify or predict the occurrence of a defect
before the system may take action to recover from
faults. The usage of tools such as fault monitors can
help in the systems immediate reaction.

Resilience Characterized by the microservice’s capacity to cope
with failures (i.e., resilience to failure). A microservice
complies to this property by saving the internal state,
and restarting automatically while loading the most
up-to-date state prior to the failure

Performance Response time The anticipated delay between the time when a
request to a microservice is issued and the time when
the result is delivered. It only considers the execution
time, excluding the network delay time. When
measuring synchronous calls, it considers the longest
response time, while for asynchronous calls, it
considers the average time spent.

Average CPU
utilization

Average usage of CPU compared between each
service

Scalability Usage frequency The ratio between the requests made to the assessed
microservice and all the requests made in the entire
system

Horizontal/vertical
scalability

The ability of a microservice to function correctly
regardless of the changes in size, horizontally or
vertically, without inquiring performance penalties

Isolation The isolation of the microservice with respect to
others with which it should only communicate via the
exposed interfaces

The security characteristic can be linked with the concept of cybersecurity, presented in section

1.1.1. A secure system can be characterized by the QAs of monitorability and security, since

systems need to be able to generate and store logs, distributed tracing, and applicational

metrics, so these can be presentable through monitoring solutions and analytics. It should also

be secure against dependencies (i.e., third-party weaknesses), monitor against security threats

at various levels (i.e., anomalous behavior and attacks), as well as have authentication and

authorization security mechanisms implemented [106], [107]. For the context of this

dissertation, the monitoring will employ the usage of AI methods and be evaluated in that

regard. In Table 11, the metrics of each QA related to security can be observed.

112 Francisco Pinto Sebastião

Table 11 - Metrics by quality attributes related to security [106], [107]

Quality
Attribute

Metric Description

Monitorability Data generation
and storage

The system should be capable of generating and
storing logs, distributed tracing and applicational
metrics in a storage system

Data presentation The store data must be presentable through
monitoring solutions and analytics

Security Third-party
weaknesses

The security of each dependency, which can impact
the security of the service

Security monitor Security Monitor is a tactic that places monitor to
observe abnormal behaviors or attacks of
microservice applications at different levels

Authentication
and authorization

Authentication is a process by which to confirm the
identity a user or a party and authorization is a
mechanism by which a principal is mapped to the
action allowing an identity to do

With all the metrics tabled and described the GQM can be observed in Table 12.

Table 12- Goals, questions, metrics

Characteristic Quality
Attribute

Goals Questions

Resilience Availability The prototype offers high availability and
fault tolerance

Indicated in
Table 10

Performance The prototype should be able to perform
under heavier workloads

Indicated in
Table 10

Scalability The prototype should be easily scalable Indicated in
Table 10

Security Monitorability The prototype provides high
monitorability

Indicated in
Table 11

Security The prototype, assisted by an AI model,
offers security regarding its API and data
management

Indicated in
Table 11

7.4 Tests

Although tests were not the focus of this dissertation, these are still important as they are vital

in validating a system’s behaviors at different granularities to ensure that it’s functioning as

expected. The classic test pyramid suggests three levels of granularity [108]. These are:

1. Unit tests: software is composed of a set of units with distinct functionalities that together

achieve the desired result. It is imperative that these operate correctly to validate and verify

the software’s quality according to its requirements. To ensure the correct functioning of

each unit of functionality, unit tests are carried out [109]. These must be isolated from

Francisco Pinto Sebastião 113

external interactions to be considered unit tests. To test functionality, it is necessary to test

all its possible outcomes or representative cases of every outcome, either of success or

failure, to ensure its expected behavior and to identify and reduce the number of

unexpected outcomes (i.e., errors or thrown exceptions) [110];

2. Integration tests: type of testing where units of functionality are integrated and tested as

a group. Its purpose is to guarantee the integration of different units and expose unwanted

outcomes/defects when the different units are integrated. It allows for verifying the

interaction between components, ensuring compatibility, detecting issues early, improving

the overall reliability of the system, and improving the quality of the system by identifying

and fixing issues before they become more difficult and expensive to resolve [111].

3. End-to-end tests: a method of testing software that involves testing a system’s workflow

from start to finish. Its goal is to replicate real-world usage scenarios in order to validate

the system in testing, and its components for data integrity and integration. It essentially

validates all of the system’s operations and how it communicates with the hardware,

network, external dependencies, databases, and other systems. Any application is

connected and integrated with multiple systems and databases outside of its environment.

This makes its workflow significantly complicated. End-to-end tests verify if the application

works as expected at all integration levels [112].

Figure 61 - Test Pyramid [108]

In the context of the developed system, unit tests and integration tests were developed to

validate that the microservices’ components were functioning as expected when in isolation

and in integration.

114 Francisco Pinto Sebastião

7.4.1 Unit tests

Before presenting how the unit tests were developed it is important to mention how these are

composed. A unit test is made up of three sections [113]:

1. Arrange: initializes the objects and sets that data’s value to be used by the method (i.e.,

behavior/functionality) under test;

2. Act: invokes the method with the set values from the previous section as its parameters;

3. Assert: verifies that the method is working as expected.

Snippet 21 - Example unit test of the debit functionality of a bank account in C#

To ensure isolation, mocking is a technique that is typically used. This is a process used in unit

tests when the unit under testing has external dependencies. The goal of mocking is to isolate

and focus on the code under testing and not on the behavior or state of the external

dependencies. In mocking, these are replaced by substitution objects that are controlled to

simulate real behavior. There are three types of substitution objects [114]:

1. Fakes: an object that replaces real code by implementing the same interface without

interacting with other objects. Typically, a fake is hard-coded to return fixed results;

2. Stubs: an object that returns specific results for specific inputs, and generally does not

respond to other requests that it was not programmed for;

3. Mocks: a more sophisticated version of a stub. Return values like a stub but can also be

programmed with expectations to how many times a method should be called, in what

order, and with what input.

Francisco Pinto Sebastião 115

Unit tests were developed for the microservices using [115]–[118]:

• xUnit: unit testing tool for .NET;

• Moq: mocking library for .NET;

• AutoFixture: a tool that removes the need to hand-code variables for tests in .NET. It

creates any type of object without the need to explicitly define which values should be used;

• FluentAssertions: a set of .NET extension methods that allow the specification of the

expected result of tests in a more natural and intuitive way.

The developed unit tests were made to cover and validate the presentation and application

layers. The setup of one of the unit test classes is presented as an example of the configuration

made on the classes and is followed by a test of each class. The following snippets are from the

User Service microservice unit tests as these represent the unit tests from the other

microservices.

116 Francisco Pinto Sebastião

Snippet 22 - Setup of the UserControllerTests class

Francisco Pinto Sebastião 117

In Snippet 22 the setup of the UserControllerTest class is presented. It shows that the external

dependencies of the class are declared as mocks, have behaviors setup for one of them with

specific responses that will be common in all tests, and initializes all of these, the UserController

instance with the mocks, and the Fixture instance that allows to quickly create new objects that

can be used for input and output.

Snippet 23 - Unit test that validates a specific behavior of the UserController class

In Snippet 23 we can observe a unit test that validates a specific behavior of the GetById

endpoint of the UserController class which is to return a Not Found response. It does this by

setting up the mock of the UserService interface that when a specific value is given then it

throws a specific exception in the arrange section, then calling the controller endpoint with that

specific value in the act section. What should happen when the exception is thrown is that the

endpoint will handle it and return Not Found response that should contain a specific message

which is what it validates in the assert section.

118 Francisco Pinto Sebastião

Snippet 24 - Unit test that validates a specific behavior of the UserService class

In Snippet 24 we can observe a unit test of the UserService class that validates a specific

behavior of the GetAsync method which is to throw a specific exception. It does this by setting

up the mock of the UserRepository interface that when given a specific value it returns a null

response in the arrange section, then calling the method with a given argument in the act

section. It then validates that it threw that specific exception and that one of the mocks was

invoked a single time and the other was never invoked in the assert section.

Francisco Pinto Sebastião 119

[Fact]

public void UserMapper_Map_ShouldReturnUser() {

 // Arrange

 var dataUser = this.GetDataUser();

 // Act

 var user = this.Mapper.Map(dataUser);

 // Assert

 user.Should().NotBeNull();

 user.Id.Should().Be(dataUser.Id);

 user.Email.Should().BeEquivalentTo(dataUser.Email);

 user.Identification.Should().Be(dataUser.Identification);

 user.Status.Should().Be(dataUser.Status);

}

(…)

private Data.User GetDataUser() =>

 this.Fixture.Create<Data.User>();

Snippet 25 - Unit test that validates a specific behavior of the UserMapper class

In Snippet 25 we can observe a unit test that validates a specific behavior of the UserMapper

class which should return a valid object. It does this by generating the input value with a Fixture

instance, via private method, in the arrange section, then invoking the method with that input

value in the act section, then finally it validates that the returned object’s properties are as

expected.

7.4.2 Integration tests

Like in unit testing, the composition of integration tests typically follows the same proposed

structure (i.e., arrange, act, and assert sections). Since these validate the

integration/interaction between different units of functionality there is no longer the need to

isolate these by mocking their external dependencies since these will also be running for their

integrated behaviors to be tested. In this case, the integration between the repository and the

database is tested across the microservices. The following snippets present the configuration

and a couple of integration tests of the UserRepository of the User Service microservice as these

represent the other integration tests in the other microservices.

120 Francisco Pinto Sebastião

public class UserRepositoryFixture : IDisposable {

 public readonly UserRepository Repository;

 public readonly Fixture Fixture;

 public readonly FinanceUserDbContext Context;

 public readonly List<User> Users;

 private string DatabaseName = "InMemoryTestDB";

 public const string UserValidIdentification = "identification";

 public const string UserInvalidIdentification = "invalidIdentification";

 public const string UserValidEmail = "test@email.com";

 public const string UserInvalidEmail = "other.test@email.com";

 public UserRepositoryFixture() {

 this.Fixture = new Fixture();

 var options = new DbContextOptionsBuilder<FinanceUserDbContext>()

 .UseInMemoryDatabase(this.DatabaseName)

 .Options;

 this.Context = new FinanceUserDbContext(options);

 this.Users = this.GetDbSetUsers();

 this.Context.Users.AddRange(this.Users);

 this.Context.SaveChanges();

 this.Repository = new UserRepository(this.Context);

 }

 (…)

 private List<User> GetDbSetUsers() =>

 this.Fixture.Build<User>()

 .With(u => u.Identification, UserValidIdentification)

 .With(u => u.Email, UserValidEmail)

 .With(u => u.Status, Status.Pending)

 .CreateMany(1).ToList();

}

Snippet 26 - Partial implementation of the class fixture developed for the UserRepository

integration tests

In Snippet 26 we can observe a partial implementation of the class fixture developed for the

UserRepository integration tests. A class fixture is an xUnit feature that is a shared context to

be used by a test class’s tests [119]. It defines common variables to be used by the tests and

Francisco Pinto Sebastião 121

sets up the database (i.e., DbContext) in an InMemory context with some data, finally starting

a new instance of the UserRepository with the database.

Snippet 27 - Pair of integration tests of the UserRepository class

In Snippet 27 we can observe two integration tests that validate the two behaviors of the Get

method of the UserRepository class in which it either returns a user or a default response (i.e.,

null). Since both tests use the existing database (i.e., shared data) there is no need for an

arrange section. In the first test it invokes the Get method with a valid information in the act

section, then asserts that its response is not null and that it has expected data in one of its

properties. In the second test it does the same but with invalid data in the act section, then

validates that the response is null since said object with said data does not exist.

122 Francisco Pinto Sebastião

7.5 Continuous Integration and Continuous
Deployment/Development

Continuous Integration and Continuous Deployment/Development (CI/CD) is vital component

of the process of automating software testing and delivery [120]. Although CI/CD was not

adopted in the system, since it ultimately was developed and tested locally, it needs to be

mentioned since it’s an important component of any software that can be accessed/used by

anyone, whether internally/privately by enterprises or publicly by other individuals. It can be

said that any software today without this process in place is doomed for failure since teams

cannot deliver value fast enough to market and by consequence are beaten by the competition

[121]. CI/CD is also important to adhere to the Secure-by-Design approach in which automated

security tests can be executed as part of the pipeline [56].

Figure 62 – CI/CD workflow [122]

From what can be understood, CI/CD is composed of two components [123], [124]:

1. CI pipeline: the first component in action, that is triggered when developers push changes

to their code. It typically performs two different sets of actions which are to build the code

and then to execute its tests (e.g., unit and integration tests) before moving onto the CD

pipeline. It’s usually complemented by static code analysis tools (e.g., SonarQube) that

scans for potential issues, bugs, or violations of code standards which helps maintain code

quality and consistency. It then generates reports and notifications to the developers about

the build status, test results, and any code analysis findings allowing for early identification

and addressing problems quickly;

2. CD pipeline: after the CI pipeline is done, the CD pipeline is triggered. What it does is to

deploy the software gradually into different environments (e.g., testing, staging, production)

that allows to perform further testing until it ultimately reaches production typically

addressed as live. CD can be performed in two different ways, manually (i.e., Continuous

Delivery) or automatically (i.e., Continuous Deployment). The difference is that in the latter

the software is promoted straight to production automatically whereas the first requires

for a developer to manually execute this promotion.

Francisco Pinto Sebastião 123

To implement CI/CD there are a wide range of tools for engineers to rely on such as Jenkins,

CircleCI, Azure DevOps, and many more [125]–[127].

Even though the usage of CI/CD was not ultimately implemented as previously mentioned, it

was still experimented on through Google Cloud Platform’s Cloud Build [128] for CI and Cloud

Run [129] for CD. The pipeline was setup through the platform’s UI which allows various

configuration options for triggering.

124 Francisco Pinto Sebastião

Setting up a CI pipeline on Cloud Build is relatively easy and straightforward through its UI. First,

the trigger must be named, a region must be selected and then to choose what type of event

will trigger the pipeline and what is the source of the repository (cf. Figure).

Figure 63 – Cloud Build trigger setup in relation to the name, region, event, and source

Francisco Pinto Sebastião 125

Then the actual configuration of the pipeline must be selected (i.e., how the pipeline will work)

and what the service account will trigger the build (cf. Figure). In this case, it’s triggered by

Figure 64 – Cloud Build trigger setup in relation to the configuration and service account

126 Francisco Pinto Sebastião

commits to the master branch and will build the Dockerfile and publish the result image to a

registry.

Figure 65 – Cloud Build build details after pipeline execution

Once a pipeline is triggered and successfully run, its status (i.e., build details) can be consulted

as well as its build logs, execution details, and generated artifacts (i.e., Docker image) (cf. Figure

65).

Figure 66 – Cloud Run service configuration

Francisco Pinto Sebastião 127

Once we have artifacts that can be published/deployed in a live environment, the service can

be created through Cloud Run’s UI. There are two options regarding its configuration, a specific

container image can be selected for deployment which means that for future releases it must

be changed to more recent versions (i.e., Continuous Delivery) or it can be integrated with Cloud

Build for automatic releases (i.e., Continuous Deployment). Once that part is setup, the service

must be named as well as a region to host it, choose what is needed regarding CPU allocation

(i.e., dynamic allocation or fixed allocation), and select what autoscaling options are required

(cf. Figure 66).

Figure 67 – Cloud Run service creation

Finally, the ingress control and authentication are setup, and additional container, networking

and security options are also available before creating the service (cf. Figure 67). The additional

options can be consulted in Annex B (cf. Figure 84 and Figure 85).

128 Francisco Pinto Sebastião

Figure 68 – Deployed service on Cloud Run

After the service has been created it can be consulted through Cloud Run along with other

information such as metrics, SLOs (Service-level objective), logs, revisions, networking, security,

triggers, and more (cf. Figure 68).

7.6 Experimentation setup

To perform experimentations on the developed system to validate the metrics set by GQM, the

usage of Vegeta – an HTTP load testing tool – was employed. Vegeta allows through the

command line to execute HTTP requests at specific rates of requests per second for a given

period, and more [130].

Snippet 28 - Examples of usage of Vegeta

Francisco Pinto Sebastião 129

Snippet 28 exemplifies a couple of ways that Vegeta can be used: In the first example, Vegeta

is going to load test the localhost on port 80 with the HTTP GET method with a rate of 50

requests/second for 5 minutes, then it saves the results on a JSON file. In the second example,

it’s going to load test the same host and port with the HTTP POST method and a JSON body with

a rate of 20 requests/second for 1 minute, then it saves the results in a JSON file.

Vegeta was used to load test the system’s endpoints to generate logs, traces, and metrics for

what could be considered a normal operating context to establish a baseline of “normal

conditions”. With a considerable number of collected data, ML jobs were created for anomaly

detection and classification for prediction. Finally, Vegeta was used to execute tests to validate

each of the GQM’s metrics.

7.7 Results

This section presents the results obtained for each quality attribute’s metric presented in

section 7.3.

7.7.1 Availability

This section presents the evaluation of the availability quality attribute’s metrics.

7.7.1.1 Uptime percentage

Regarding uptime percentage, this is a metric that requires continuous assessment over several

months and production-level environmental conditions for it to be verified. Regardless, an

assessment was made through Vegeta to guarantee a stable supply of requests to the system

and consulting the uptime percentage in Kibana, as described in Annex A.1.5.4, during the

period of the execution of requests. This is presented in Figure 69, and it also represents the

whole system, that during the assessment the microservice maintained its availability at 100%

fulfilling what would be most cloud platforms SLA. This allowed to verify the metric as compliant.

130 Francisco Pinto Sebastião

Figure 69 - Uptime of the User Service during the testing period

7.7.1.2 Successful execution rate

Like the uptime percentage, the successful execution rate metric requires the same conditions

for it to be verified, but an assessment was made through request execution by Vegeta and the

result can be consulted on Figure 70. As observed, the latency and throughput were relatively

stable, with latency typically below 100ms with a few spikes, throughout the load testing period

with 0% failed transaction rate, ensuring 100% successful execution rate. This validates the

metric as compliant.

Figure 70 - Transaction metrics of the User Service during the testing period

Francisco Pinto Sebastião 131

7.7.1.3 Fault detection

Regarding fault detection, a circuit breaker was implemented on the API Gateway since Ocelot

provides that feature, as described in Annex A.1.2, through the Polly library [131]. To use this

feature, a configuration must be added to the declared routes in Ocelot’s configuration (cf.

Snippet 29), and then it must be added to the service collection (cf. Snippet 30) [132].

Snippet 29 - Quality of Service options for the circuit breaker feature

To explain the options above: Exceptions allowed before breaking is the number of exceptions

that can occur before opening the circuit (i.e., breaking). Duration of break is how long the

circuit will stay open after breaking. The timeout value is how long a request is allowed to live

before being timed out.

Snippet 30 - Adding Polly to the services

With logs and metrics stored in Elasticsearch, Kibana can transform these into alarms for

situations, via anomaly detection, such as unexpected downtime of a service that sends

automatic notifications to the developer, reducing the time to correct unwanted situations.

With these tools, fault detection can be guaranteed for each microservice. This validates the

metric as compliant.

7.7.1.4 Resilience

Regarding resilience, this was ensured by Docker Swarm since it maintains the configured

number of instances at all times [133]. Whenever an instance experiences failure, it starts a new

one to replace it, and since its state is saved onto the database the new instances are always

up to date. This verifies the metric as compliant.

132 Francisco Pinto Sebastião

7.7.2 Performance

Regarding performance, even though the real-time applicational performance metrics such as

response time, average CPU utilization, average memory usage, and network traffic could be

consulted and analyzed in Kibana, as presented in sections 6.1.2.2 and 6.1.2.3, this was not

possible to verify since testing in a local environment (i.e., personal computer) does not

guarantee a stable test environment where the system’s performance is not impacted by

external factors (i.e., third party systems). This means that the metrics related to this quality

attribute are unable to be verified.

7.7.3 Scalability

This section presents the evaluation of the scalability quality attribute’s metrics.

7.7.3.1 Usage frequency

Regarding usage frequency, Elastic’s APM Server was the chosen tool to track distributed

tracing and evaluate the percentage of requests made to the evaluated microservice (i.e.,

Transfer Service) when compared to the whole system. A single request was made to each

available operation (i.e., endpoint) in the exposed REST APIs to uncover the subsequent

requests, presented in Table 13.

Table 13 - Usage frequency of each microservice

Microservice Number of operations Number of invocations to other Microservices

Core Service 6 0
User Service 5 1

Transfer Service 2 2

Payment Service 2 1

Total 15 4

The ratio between requests made to the evaluated microservice and the total requests made

to the whole system is 13.33% meaning that, when supported by the fact that the subsequent

requests are all asynchronous, it guarantees the scalability of the system (i.e., compliant with

the metric).

7.7.3.2 Horizontal/vertical scalability

Regarding horizontal and vertical scalability: horizontal scalability was achieved by using Docker

Swarm. It allows the manipulation of the number of instances of the same image under the

same name, and this number can be changed on the fly [133]. Vertical scalability can also be

achieved through Docker but not in a way that would ensure this metric, since it requires to

manually start each container with the option of CPU and memory and to change the assigned

values implies starting another instance with these values updated and then to stop the

previous instance. This means that this metric is partially compliant.

Francisco Pinto Sebastião 133

7.7.3.3 Isolation

Regarding the isolation of the microservices, these can only communicate through the exposed

REST API interfaces. This verifies the metric as compliant.

7.7.4 Monitorability

This section presents the evaluation of the monitorability quality attribute’s metrics.

7.7.4.1 Data generation and storage

Regarding data generation and storage, as previously described in sections 6.1.2 and 6.2.2:

• Logs are generated by Serilog following the ECS format and are then written in Elasticsearch

which manages the data storage;

• Traces are sent to the APM Server which in turn writes these in Elasticsearch;

• Metrics are collected by Metricbeat and written in Elasticsearch.

This allows to verify this metric as compliant.

7.7.4.2 Data presentation

Regarding data presentation, the Kibana instance consumes this data and provides the user

with multiple views and monitors as shown in section 6.1.2 and in Annex A.1.5. This verifies that

the metric is compliant.

7.7.5 Security

This section presents the evaluation of the security quality attribute’s metrics.

7.7.5.1 Third-party vulnerabilities

Regarding third-party vulnerabilities, the Snyk [134] plugin was used to analyze to whole

dependency tree of the project for known vulnerabilities. The plugin achieves this by looking at

the Common Weakness Enumeration (CWE) [135], Common Vulnerabilities and Exposures (CVE)

[136], and Common Vulnerability Scoring System (CVSS) [137] databases, and Snyk’s own

vulnerability database [138]. The usage of this tool adheres to the static and dynamic analysis

method of the Secure-by-Design approach in which it identifies vulnerabilities in the application

[56]. Figure 71 presents the results of the conducted analysis on the Core Service solution and

these represent the other services as well since they share the same dependencies on their

presentation service project except the data model vulnerability.

134 Francisco Pinto Sebastião

Figure 71 - Analysis of dependent libraries of the Core Service solution

Although an effort was made to combat the number of vulnerabilities of the projects, by

upgrading and downgrading some of the dependencies, this small number remained. For this

reason, this metric is not compliant. Is it worth noting that these vulnerabilities are related to

the chosen libraries and framework.

7.7.5.2 Security monitor

When it comes to the security monitor, Kibana allows the generation of detailed graphics and

monitors at various levels to observe and monitor as well as alert of the anomalous behavior of

each microservice through the created ML jobs, as described in section 0. This means this metric

is compliant.

Francisco Pinto Sebastião 135

Figure 72 - Detected anomalies in transactions by the APM ML job

Figure 73 - Detected anomalies in log count and ingestion rate by the logs ML job

7.7.5.3 Authentication and authorization

Finally, regarding authentication and authorization, this was implemented via JSON Web Token

(JWT) [139] on each microservice by employing .NET’s internal implementation. Snippet 31

exemplifies how it is configured on each microservice. The JWT options are loaded from the app

settings configuration file and are then used to set up the authentication. To start using

authorization the “authorize” annotation must be added to the endpoints on the Controllers.

The requirement of roles can be added through the annotation as exemplified in Snippet 32.

136 Francisco Pinto Sebastião

Snippet 31 - Authentication and Authorization configuration

Snippet 32 - Usage of the authorize annotation in an endpoint

7.8 Summary

Rounding up the evaluation made in Table 14, 15 metrics were considered, with 10 compliant,

1 partially compliant, 2 unable to be verified, and 1 non-compliant.

Francisco Pinto Sebastião 137

Table 14 - Evaluation results

Characteristic Quality Attribute Metric Compliance degree

Resilience Availability Uptime percentage Complete

Successful execution rate Complete

Fault detection Complete
Resilience Complete

Performance Response time Unable to verify

Average CPU utilization Unable to verify
Scalability Usage frequency Complete

Horizontal/vertical scalability Partial

Isolation Complete

Security Monitorability Data generation and storage Complete
Data presentation Complete

Security Third-party weaknesses Does not comply

Security monitor Complete

Authentication and authorization Complete

It can be concluded that the designed and implemented system accomplished completely the

goals associated with the availability and monitorability QAs, but there is still a need to execute

further testing to ensure its performance and scalability, and to resolve the weaknesses found

in its dependencies to guarantee the system’s security.

Regarding the investigation hypotheses:

• H.1: The system provides high levels of availability, and some of scalability, but its

performance cannot be verified. This means that the proposed architecture offers some

levels of operation resilience, but it requires further testing to ensure it provides high levels

of resilience.

• H.2: The system provides high levels of monitorability and some of security, meaning that

the usage of AI methods, particularly ML, in conjunction with the proposed architecture

does offer a great advantage in its security, but it needs to solve the weaknesses stemming

its dependencies or at least keep them to an acceptable level.

138 Francisco Pinto Sebastião

Francisco Pinto Sebastião 139

8 Conclusions

This chapter describes which objectives were achieved, and those that were not, the limitations

that were found during the development, and the future work for other possible approaches

for further investigation. Finally, a final appreciation of the work done and the obtained

knowledge on a personal level is presented.

8.1 Objectives achieved

The primordial objective associated with this dissertation is to understand how microservices

can respond to the context of critical systems when looking at resilience and security when

paired with machine learning. The compliance of the objectives is summarized in the form of

RQs with their respective investigation hypotheses in Table 15.

Table 15 - Summary of objectives

Research question Investigation hypothesis Compliance
degree

Does the proposed architecture
offer high levels of operational
resilience?

The proposed architecture offers high
levels of operational resilience

Partial

Does the adoption of AI methods
assist in security in such a context?

The usage of AI methods in
conjunction with the proposed
architecture provides a great
advantage in its security

Partial

In short, it can be stated that the objectives of this dissertation were partially accomplished. As

explained in section 7.8, the system provided certain levels of operational resilience and the

usage of ML provided a great advantage in its security but there are certain aspects that need

further testing such as its performance and scalability, and further refinement regarding the

weaknesses found on its dependencies.

140 Francisco Pinto Sebastião

8.2 Limitations

Certain difficulties were detected throughout this dissertation that raised concerns regarding

the system’s validation and applicability to other situations. These are:

• Due to the limited resources available, it was not possible to develop an isolated testing

environment, not ensuring the validity of some tests. This is because the available Azure

and Google Cloud student credits were not sufficient to setup a relatively robust

infrastructure with the system and its external dependencies for long enough to perform

experimentations, even with the lowest tier pricing;

• This dissertation focuses on a single system and framework so the results cannot be

generalized. Further case studies with other systems and different frameworks would be

required to highlight the pros and cons of each situation.

8.3 Future work

Although most goals were accomplished, there are still other possible approaches that can be

followed for further investigation that allow to make the system more robust and for further

testing regarding performance, anomaly detection, and prevention. Those are:

• Remove dependency vulnerabilities: it is necessary to ensure the system’s safety by

performing a careful analysis of the detected vulnerabilities to validate and assess possible

fixes since these are possible points of breach for malicious external authors;

• Usage of a cloud-based environment as a stable testing environment: with the system

secured, the usage of a cloud-base environment as stable testing environment such as

Azure, Amazon Web Services (AWS), or Google Cloud Platform (GCP) would follow to ensure

its stability and security;

• Execute remaining tests: with robust infrastructure capable of boasting sufficient resources

(i.e., CPU and RAM) for extensive testing due to the cloud-based environment, the system

could now be tested on its performance and remaining scalability metrics, perhaps public

testing to have a broader user base;

• Experimentation with other machine learning technologies: with a more robust

infrastructure boasting more resources than the typical local development machine, the

system can generate more logs, traces and metrics that can be used for further ML

experimentation in anomaly detection and prevention with the use of other technologies

such as Amazon CloudWatch, or Google Dataflow (cf. section 2.3.1).

8.4 Final appreciation

This dissertation allowed the student to consolidate and apply the knowledge obtained

throughout the master’s course in an investigational context. This also allowed the student to

acquire experience in the development and investigation of technologies, software

Francisco Pinto Sebastião 141

architectural design, and concepts that are the Elastic Stack, microservices, security, and

machine learning.

One of the main goals of the dissertation was the adaptation of the student’s knowledge to a

context that is the further deepening of the knowledge of a specific subject. The proposed

project presented itself as complex and challenging, but at the same time attractive, since it

allowed the student to cement the themes studied during the degree, to touch on themes

outside the degree that are security and machine learning, and to acquire competencies in an

investigational context.

Finally, the study of new technologies, namely the Elastic Stack and its many features, allowed

to expand the student’s technical knowledge

142 Francisco Pinto Sebastião

.

Francisco Pinto Sebastião 143

References

[1] C. and I. S. Agency, “What is Cybersecurity?” Accessed: Jan. 22, 2023. [Online]. Available:

https://www.cisa.gov/uscert/ncas/tips/ST04-001

[2] National Cyber Security Centre, “What is cyber security?” Accessed: Jan. 22, 2023.

[Online]. Available: https://www.ncsc.gov.uk/section/about-ncsc/what-is-cyber-

security

[3] IBM, “What is Artificial Intelligence (AI) ? | IBM.” Accessed: Feb. 25, 2023. [Online].

Available: https://www.ibm.com/topics/artificial-intelligence

[4] S. Brown, “Machine learning, explained | MIT Sloan.” Accessed: Feb. 25, 2023. [Online].

Available: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained

[5] P. Grieve, “Deep learning vs. machine learning: What’s the difference?” Accessed: Feb.

25, 2023. [Online]. Available: https://www.zendesk.com/blog/machine-learning-and-

deep-learning/

[6] K. Joshi, “How AI is Changing Cybersecurity: New Threats & Opportunities.” Accessed:

Feb. 25, 2023. [Online]. Available: https://emeritus.org/blog/cybersecurity-how-ai-is-

changing-cybersecurity/

[7] B. Committee on Banking Supervision, “Principles for Operational Resilience,” Aug. 2020.

[8] D. Cio, “DoDI 8500.01, March 14, 2014, Incorporating Change 1 on October 7, 2019,”

2014.

[9] A. Kott and I. Linkov, “To improve cyber resilience, measure it,” Computer (Long Beach

Calif), vol. 54, no. 2, pp. 80–85, Feb. 2021, doi: 10.1109/MC.2020.3038411.

[10] “UHS breach shows the dangers facing hospitals with growing ransomware threats |

Fierce Healthcare.” Accessed: Feb. 12, 2023. [Online]. Available:

https://www.fiercehealthcare.com/tech/uhs-breach-shows-dangers-facing-hospitals-

growing-cyber-threats

[11] M. Hinchey and L. Coyle, “Evolving critical systems: A research agenda for computer-

based systems,” 17th IEEE International Conference and Workshops on the Engineering

of Computer-Based Systems, ECBS 2010, pp. 430–435, 2010, doi: 10.1109/ECBS.2010.56.

[12] “The NIS2 Directive: A high common level of cybersecurity in the EU | Think Tank |

European Parliament.” Accessed: Oct. 13, 2023. [Online]. Available:

https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)689333

[13] T. Yarygina and A. H. Bagge, “Overcoming Security Challenges in Microservice

Architectures,” Proceedings - 12th IEEE International Symposium on Service-Oriented

144 Francisco Pinto Sebastião

System Engineering, SOSE 2018 and 9th International Workshop on Joint Cloud

Computing, JCC 2018, pp. 11–20, May 2018, doi: 10.1109/SOSE.2018.00011.

[14] S. Newman, Building Microservices: Designing Fine-Grained Systems, 1st ed. O’Reilly

Media, Inc., 2015.

[15] M. Fowler and J. Lewis, “Microservices.” Accessed: Feb. 11, 2023. [Online]. Available:

https://martinfowler.com/articles/microservices.html

[16] “What are microservices?” Accessed: Feb. 11, 2023. [Online]. Available:

https://microservices.io/

[17] “What is a REST API?” Accessed: Feb. 12, 2023. [Online]. Available:

https://www.redhat.com/en/topics/api/what-is-a-rest-api

[18] “What does an API gateway do?” Accessed: Feb. 12, 2023. [Online]. Available:

https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do

[19] V. Mokhor, S. Honchar, and A. Onyskova, “Cybersecurity Risk Assessment of Information

Systems of Critical Infrastructure Objects,” 2020 IEEE International Conference on

Problems of Infocommunications Science and Technology, PIC S and T 2020 - Proceedings,

pp. 19–22, Oct. 2021, doi: 10.1109/PICST51311.2020.9467957.

[20] L. Maglaras, I. Kantzavelou, and M. A. Ferrag, “Digital Transformation and Cybersecurity

of Critical Infrastructures,” Applied Sciences 2021, Vol. 11, Page 8357, vol. 11, no. 18, p.

8357, Sep. 2021, doi: 10.3390/APP11188357.

[21] “Artificial Intelligence Cybersecurity Challenges — ENISA.” Accessed: Oct. 12, 2023.

[Online]. Available: https://www.enisa.europa.eu/publications/artificial-intelligence-

cybersecurity-challenges

[22] A. Sampaio, “Improving Systematic Mapping Reviews,” ACM SIGSOFT Software

Engineering Notes, vol. 40, no. 6, pp. 1–8, Nov. 2015, doi: 10.1145/2830719.2830732.

[23] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen, and S. Dustdar,

“Microservices: Migration of a Mission Critical System,” IEEE Trans Serv Comput, vol. 14,

no. 5, pp. 1464–1477, 2021, doi: 10.1109/TSC.2018.2889087.

[24] E. Solberg, The transition from monolithic architecture to microservice architecture A

case study of a large Scandinavian financial institution. Oslo, 2022.

[25] A. Furda, L. Van Den Berg, G. Reid, G. Camera, and M. Pinasco, “Developing a

Microservices Integration Layer for Next-Generation Rail Operations Centers,” IEEE

Softw, vol. 39, no. 5, pp. 9–16, 2022, doi: 10.1109/MS.2022.3179030.

[26] R. P. Pontarolli, J. A. Bigheti, L. B. R. de Sá, and E. P. Godoy, “Towards security

mechanisms for an industrial microservice-oriented architecture,” 2021 14th IEEE

Francisco Pinto Sebastião 145

International Conference on Industry Applications, INDUSCON 2021 - Proceedings, pp.

679–685, Aug. 2021, doi: 10.1109/INDUSCON51756.2021.9529415.

[27] B. Yang, F. Zhang, and S. U. Khan, “An Encryption-as-a-service Architecture on Cloud

Native Platform,” Proceedings - International Conference on Computer Communications

and Networks, ICCCN, vol. 2021-Janua, 2021, doi: 10.1109/ICCCN52240.2021.9522248.

[28] “Kubernetes.” Accessed: Feb. 13, 2023. [Online]. Available: https://kubernetes.io/

[29] “HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer.” Accessed: Feb. 13,

2023. [Online]. Available: https://www.haproxy.org/

[30] F. Al-Doghman, N. Moustafa, I. Khalil, Z. Tari, and A. Zomaya, “AI-enabled Secure

Microservices in Edge Computing: Opportunities and Challenges,” IEEE Trans Serv

Comput, 2022, doi: 10.1109/TSC.2022.3155447.

[31] M. O. Pahl and M. Loipfinger, “Machine learning as a reusable microservice,” IEEE/IFIP

Network Operations and Management Symposium: Cognitive Management in a Cyber

World, NOMS 2018, pp. 1–7, Jul. 2018, doi: 10.1109/NOMS.2018.8406165.

[32] H. Bangui, B. Rossi, and B. Buhnova, “A Conceptual Antifragile Microservice Framework

for Reshaping Critical Infrastructures,” Proceedings - 2022 IEEE International Conference

on Software Maintenance and Evolution, ICSME 2022, pp. 364–368, 2022, doi:

10.1109/ICSME55016.2022.00040.

[33] N. N. Taleb, Antifragile : things that gain from disorder, 1st ed. Random House, 2012.

[34] “Gretel.ai — Incorporate generative AI into your data.” Accessed: Feb. 24, 2023. [Online].

Available: https://gretel.ai/

[35] S. Jacob, Y. Qiao, and B. Lee, “Detecting Cyber Security Attacks against a Microservices

Application using Distributed Tracing,” 2021, doi: 10.5220/0010308905880595.

[36] S. Jacob, Y. Qiao, Y. Ye, and B. Lee, “Anomalous distributed traffic: Detecting cyber

security attacks amongst microservices using graph convolutional networks,” Comput

Secur, vol. 118, p. 102728, Jul. 2022, doi: 10.1016/J.COSE.2022.102728.

[37] J. Chen, H. Huang, and H. Chen, “Informer: Irregular traffic detection for containerized

microservices RPC in the real world,” Proceedings of the 4th ACM/IEEE Symposium on

Edge Computing, SEC 2019, pp. 389–394, Nov. 2019, doi: 10.1145/3318216.3363375.

[38] I. Macedo, S. Wanous, N. Oliveira, O. Sousa, and I. Praça, “A tool to support the

investigation and visualization of cyber and/or physical incidents,” Advances in

Intelligent Systems and Computing, vol. 1368 AISC, pp. 130–140, Dec. 2021, doi:

10.48550/arxiv.2112.01103.

146 Francisco Pinto Sebastião

[39] “What is Distributed Tracing? How it Works & Use Cases | Datadog.” Accessed: Feb. 13,

2023. [Online]. Available: https://www.datadoghq.com/knowledge-center/distributed-

tracing/

[40] “Managed Open-Source Elasticsearch and OpenSearch Search and Log Analytics –

Amazon OpenSearch Service – Amazon Web Services.” Accessed: Oct. 01, 2023. [Online].

Available: https://aws.amazon.com/opensearch-service/

[41] “OpenSearch.” Accessed: Oct. 01, 2023. [Online]. Available: https://opensearch.org/

[42] “Preprocess logs for anomaly detection in Amazon OpenSearch | AWS Big Data Blog.”

Accessed: Oct. 01, 2023. [Online]. Available: https://aws.amazon.com/blogs/big-

data/preprocess-logs-for-anomaly-detection-in-amazon-opensearch/

[43] “Dataflow | Google Cloud.” Accessed: Oct. 01, 2023. [Online]. Available:

https://cloud.google.com/dataflow

[44] “Anomaly detection using streaming analytics & AI | Google Cloud Blog.” Accessed: Oct.

01, 2023. [Online]. Available: https://cloud.google.com/blog/products/data-

analytics/anomaly-detection-using-streaming-analytics-and-ai

[45] “What is Elastic Machine Learning? | Machine Learning in the Elastic Stack [8.10] |

Elastic.” Accessed: Sep. 29, 2023. [Online]. Available:

https://www.elastic.co/guide/en/machine-learning/8.10/machine-learning-intro.html

[46] “Circuit Breaker pattern - Azure Architecture Center | Microsoft Learn.” Accessed: Oct.

01, 2023. [Online]. Available: https://learn.microsoft.com/en-

us/azure/architecture/patterns/circuit-breaker

[47] “Circuit Breaker Pattern.” Accessed: Oct. 01, 2023. [Online]. Available:

https://blog.soumendrak.com/circuit-breaker-design-pattern-997c3521c1c4

[48] “Implementing Resiliency Patterns in Microservices | AppMaster.” Accessed: Oct. 01,

2023. [Online]. Available: https://appmaster.io/blog/microservices-architecture-

resiliency-patterns

[49] “Rate Limiting pattern - Azure Architecture Center | Microsoft Learn.” Accessed: Oct. 01,

2023. [Online]. Available: https://learn.microsoft.com/en-

us/azure/architecture/patterns/rate-limiting-pattern

[50] “Health Check.” Accessed: Oct. 01, 2023. [Online]. Available:

https://microservices.io/patterns/observability/health-check-api.html

[51] “Fallback pattern · Microservices Architecture.” Accessed: Oct. 01, 2023. [Online].

Available: https://badia-kharroubi.gitbooks.io/microservices-

architecture/content/patterns/communication-patterns/fallback-pattern.html

Francisco Pinto Sebastião 147

[52] “Bulkhead pattern - Azure Architecture Center | Microsoft Learn.” Accessed: Oct. 01,

2023. [Online]. Available: https://learn.microsoft.com/en-

us/azure/architecture/patterns/bulkhead

[53] “Safety-Critical Validation”.

[54] “The Concept of Domain-Driven Design Explained | by Sara Miteva | Microtica |

Medium.” Accessed: Oct. 11, 2023. [Online]. Available:

https://medium.com/microtica/the-concept-of-domain-driven-design-explained-

3184c0fd7c3f

[55] “What is the Domain Model in Domain Driven Design? | Culttt.” Accessed: Sep. 23, 2023.

[Online]. Available: https://culttt.com/2014/11/12/domain-model-domain-driven-

design/

[56] “Secure by Design.” Accessed: Oct. 12, 2023. [Online]. Available:

https://aptori.dev/learn/secure-by-design-and-default

[57] “The C4 model for visualising software architecture.” Accessed: Sep. 16, 2023. [Online].

Available: https://c4model.com/

[58] P. Kruchten, “Architectural Blueprints-The ‘4+1’ View Model of Software Architecture,”

IEEE Softw, vol. 12, no. 6, pp. 42–50, 1995.

[59] R. C. Martin, “Design Principles and Design Patterns,” 2000, Accessed: Sep. 18, 2023.

[Online]. Available: www.objectmentor.com

[60] “Fielding Dissertation: CHAPTER 5: Representational State Transfer (REST).” Accessed:

Sep. 18, 2023. [Online]. Available:

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[61] “Docker: Accelerated Container Application Development.” Accessed: Sep. 17, 2023.

[Online]. Available: https://www.docker.com/

[62] “What is Docker? ”In Simple English” | by Yann Mulonda | Medium.” Accessed: Sep. 17,

2023. [Online]. Available: https://yannmjl.medium.com/what-is-docker-in-simple-

english-a24e8136b90b

[63] “The Onion Architecture : part 1 | Programming with Palermo.” Accessed: Sep. 18, 2023.

[Online]. Available: https://jeffreypalermo.com/2008/07/the-onion-architecture-part-

1/

[64] “Onion Architecture In ASP.NET Core 6 Web API.” Accessed: Sep. 18, 2023. [Online].

Available: https://www.c-sharpcorner.com/article/onion-architecture-in-asp-net-core-

6-web-api/#

148 Francisco Pinto Sebastião

[65] “P of EAA: Service Layer.” Accessed: Sep. 19, 2023. [Online]. Available:

https://martinfowler.com/eaaCatalog/serviceLayer.html#

[66] “P of EAA: Data Mapper.” Accessed: Sep. 19, 2023. [Online]. Available:

https://martinfowler.com/eaaCatalog/dataMapper.html

[67] “Strategy Design Pattern.” Accessed: Sep. 19, 2023. [Online]. Available:

https://sourcemaking.com/design_patterns/strategy

[68] “InversionOfControl.” Accessed: Sep. 19, 2023. [Online]. Available:

https://martinfowler.com/bliki/InversionOfControl.html

[69] “Dependency injection - .NET | Microsoft Learn.” Accessed: Sep. 19, 2023. [Online].

Available: https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-

injection

[70] “Designing the infrastructure persistence layer - .NET | Microsoft Learn.” Accessed: Sep.

19, 2023. [Online]. Available: https://learn.microsoft.com/en-

us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-

persistence-layer-design#the-repository-pattern

[71] “Service Registry Design Pattern in Microservices Explained | by Soma | Javarevisited |

Medium.” Accessed: Sep. 24, 2023. [Online]. Available:

https://medium.com/javarevisited/service-registry-design-pattern-in-microservices-

explained-a796494c608e#

[72]. “NET | Build. Test. Deploy.” Accessed: Sep. 24, 2023. [Online]. Available:

https://dotnet.microsoft.com/en-us/

[73] “Introducing .NET 5 - .NET Blog.” Accessed: Sep. 24, 2023. [Online]. Available:

https://devblogs.microsoft.com/dotnet/introducing-net-5/

[74]. “NET Framework is dead -- long live .NET 5.” Accessed: Sep. 24, 2023. [Online]. Available:

https://betanews.com/2019/05/07/future-of-dotnet/

[75]. “NET (and .NET Core) - introduction and overview - .NET | Microsoft Learn.” Accessed:

Sep. 24, 2023. [Online]. Available: https://learn.microsoft.com/en-

us/dotnet/core/introduction

[76] “A tour of C# - Overview - C# | Microsoft Learn.” Accessed: Sep. 24, 2023. [Online].

Available: https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

[77] “Serilog — simple .NET logging with fully-structured events.” Accessed: Sep. 24, 2023.

[Online]. Available: https://serilog.net/

[78] “serilog-contrib/serilog-sinks-elasticsearch: A Serilog sink that writes events to

Elasticsearch.” Accessed: Sep. 24, 2023. [Online]. Available: https://github.com/serilog-

contrib/serilog-sinks-elasticsearch

Francisco Pinto Sebastião 149

[79] “Overview | Elastic Common Schema (ECS) Reference [8.10] | Elastic.” Accessed: Sep.

24, 2023. [Online]. Available: https://www.elastic.co/guide/en/ecs/current/ecs-

reference.html

[80] “Get Started | ECS Logging .NET Reference | Elastic.” Accessed: Sep. 24, 2023. [Online].

Available: https://www.elastic.co/guide/en/ecs-logging/dotnet/current/setup.html

[81] “Overview of Entity Framework Core - EF Core | Microsoft Learn.” Accessed: Sep. 24,

2023. [Online]. Available: https://learn.microsoft.com/en-us/ef/core/

[82] “Steeltoe - Home.” Accessed: Sep. 24, 2023. [Online]. Available: https://steeltoe.io/

[83] “domaindrivendev/Swashbuckle.AspNetCore: Swagger tools for documenting API’s built

on ASP.NET Core.” Accessed: Sep. 24, 2023. [Online]. Available:

https://github.com/domaindrivendev/Swashbuckle.AspNetCore

[84] “Application Performance Monitoring (APM) with Elastic Observability | Elastic.”

Accessed: Sep. 24, 2023. [Online]. Available:

https://www.elastic.co/observability/application-performance-monitoring

[85] “ASP.NET Core | APM .NET Agent Reference [1.x] | Elastic.” Accessed: Sep. 24, 2023.

[Online]. Available:

https://www.elastic.co/guide/en/apm/agent/dotnet/current/setup-asp-net-core.html

[86] “Big Picture — Ocelot 1.0.0 documentation.” Accessed: Sep. 24, 2023. [Online]. Available:

https://ocelot.readthedocs.io/en/latest/introduction/bigpicture.html

[87] “What is Service Discovery? Definition and Related FAQs | Avi Networks.” Accessed: Sep.

24, 2023. [Online]. Available: https://avinetworks.com/glossary/service-discovery/#

[88] “Client-side service discovery pattern.” Accessed: Sep. 24, 2023. [Online]. Available:

https://microservices.io/patterns/client-side-discovery.html

[89] “Server-side service discovery pattern.” Accessed: Sep. 24, 2023. [Online]. Available:

https://microservices.io/patterns/server-side-discovery.html

[90] “Service Discovery in a Microservices Architecture - NGINX.” Accessed: Sep. 24, 2023.

[Online]. Available: https://www.nginx.com/blog/service-discovery-in-a-microservices-

architecture/

[91] “Consul by HashiCorp.” Accessed: Sep. 24, 2023. [Online]. Available:

https://www.consul.io/

[92] “Microsoft Data Platform | Microsoft.” Accessed: Sep. 24, 2023. [Online]. Available:

https://www.microsoft.com/en-us/sql-server

150 Francisco Pinto Sebastião

[93] “Definition of database server | PCMag.” Accessed: Sep. 24, 2023. [Online]. Available:

https://www.pcmag.com/encyclopedia/term/database-server

[94] “Editions and supported features of SQL Server 2022 - SQL Server | Microsoft Learn.”

Accessed: Sep. 24, 2023. [Online]. Available: https://learn.microsoft.com/en-us/sql/sql-

server/editions-and-components-of-sql-server-2022?view=sql-server-ver16&preserve-

view=true

[95] “PostgreSQL: The world’s most advanced open source database.” Accessed: Sep. 24,

2023. [Online]. Available: https://www.postgresql.org/

[96] “Elasticsearch: The Official Distributed Search & Analytics Engine | Elastic.” Accessed:

Sep. 24, 2023. [Online]. Available: https://www.elastic.co/elasticsearch/

[97] “Kibana: Explore, Visualize, Discover Data | Elastic.” Accessed: Sep. 24, 2023. [Online].

Available: https://www.elastic.co/kibana

[98] “Metricbeat: Lightweight Shipper for Metrics | Elastic.” Accessed: Sep. 24, 2023. [Online].

Available: https://www.elastic.co/beats/metricbeat#system

[99] “Heartbeat overview | Heartbeat Reference [8.10] | Elastic.” Accessed: Sep. 24, 2023.

[Online]. Available:

https://www.elastic.co/guide/en/beats/heartbeat/current/heartbeat-overview.html

[100] “Initialize Discovery Client | Steeltoe.” Accessed: Sep. 25, 2023. [Online]. Available:

https://docs.steeltoe.io/api/v3/discovery/initialize-discovery-client.html

[101] “HashiCorp Consul | Steeltoe.” Accessed: Sep. 25, 2023. [Online]. Available:

https://docs.steeltoe.io/api/v3/discovery/hashicorp-consul.html

[102] “Discovering Services | Steeltoe.” Accessed: Sep. 25, 2023. [Online]. Available:

https://docs.steeltoe.io/api/v3/discovery/discovering-services.html

[103] Reading Craze, “Hypothesis Formulation in Research - Reading Craze.” Accessed: Feb. 19,

2023. [Online]. Available: http://readingcraze.com/index.php/hypothesis-formulation-

research/

[104] Leading Agile, “GQM Approach: Agile Metrics - LeadingAgile.” Accessed: Feb. 19, 2023.

[Online]. Available: https://www.leadingagile.com/2017/05/agile-metrics-gqm-

approach/

[105] M.-D. Cojocaru, A. Uta, and A.-M. Oprescu, “Attributes Assessing the Quality of

Microservices Automatically Decomposed from Monolithic Applications”.

[106] T. Schirgi, “Architectural Quality Attributes for the Microservices of CaRE,” 2021.

Francisco Pinto Sebastião 151

[107] S. Li et al., “Understanding and addressing quality attributes of microservices

architecture: A Systematic literature review,” Inf Softw Technol, vol. 131, p. 106449, Mar.

2021, doi: 10.1016/J.INFSOF.2020.106449.

[108] “What is Testing Pyramid?” Accessed: Oct. 10, 2023. [Online]. Available:

https://www.headspin.io/blog/the-testing-pyramid-simplified-for-one-and-all

[109] “What Is Unit Testing? | SmartBear.” Accessed: Oct. 10, 2023. [Online]. Available:

https://smartbear.com/learn/automated-testing/what-is-unit-testing/

[110] D. Huizinga and A. Kolawa, “Best Practices for Testing and Code Review,” Automated

Defect Prevention, pp. 250–270, 2007.

[111] “Integration Testing: A Detailed Guide | BrowserStack.” Accessed: Oct. 11, 2023.

[Online]. Available: https://www.browserstack.com/guide/integration-testing

[112] “What is End To End Testing? | BrowserStack.” Accessed: Oct. 10, 2023. [Online].

Available: https://www.browserstack.com/guide/end-to-end-testing

[113] “Unit testing fundamentals - Visual Studio (Windows) | Microsoft Learn.” Accessed: Oct.

10, 2023. [Online]. Available: https://learn.microsoft.com/en-us/visualstudio/test/unit-

test-basics?view=vs-2019

[114] “Mocking Framework for Unit Testing - Telerik JustMock.” Accessed: Oct. 11, 2023.

[Online]. Available: https://www.telerik.com/products/mocking/unit-testing.aspx

[115] “Home > xUnit.net.” Accessed: Oct. 11, 2023. [Online]. Available: https://xunit.net/

[116] “devlooped/moq: The most popular and friendly mocking framework for .NET.”

Accessed: Oct. 11, 2023. [Online]. Available: https://github.com/devlooped/moq

[117] “Home - AutoFixture.” Accessed: Oct. 11, 2023. [Online]. Available:

https://autofixture.github.io/

[118] “Fluent Assertions - Fluent Assertions.” Accessed: Oct. 11, 2023. [Online]. Available:

https://fluentassertions.com/

[119] “Shared Context between Tests > xUnit.net.” Accessed: Oct. 12, 2023. [Online]. Available:

https://xunit.net/docs/shared-context

[120] “What Is CI/CD and How Does It Work? | Synopsys.” Accessed: Oct. 12, 2023. [Online].

Available: https://www.synopsys.com/glossary/what-is-cicd.html

[121] “Why CI/CD pipelines can’t replace local software development operations: Managing

expectations vs. reality - Cloudomation.” Accessed: Oct. 12, 2023. [Online]. Available:

https://cloudomation.com/en/cloudomation-blog/ci-cd-pipelines-local-development-

operations/

152 Francisco Pinto Sebastião

[122] “Continuous Integration & Deployment | element61.” Accessed: Oct. 12, 2023. [Online].

Available: https://www.element61.be/en/competence/continuous-integration-

deployment

[123] “What is CI/CD? (Differences, Benefits, Tools, Fundamentals) | BrowserStack.” Accessed:

Oct. 12, 2023. [Online]. Available: https://www.browserstack.com/guide/what-is-ci-cd

[124] “Code Quality, Security & Static Analysis Tool with SonarQube | Sonar.” Accessed: Oct.

12, 2023. [Online]. Available: https://www.sonarsource.com/products/sonarqube/

[125] “Jenkins.” Accessed: Oct. 12, 2023. [Online]. Available: https://www.jenkins.io/

[126] “Continuous Integration and Delivery - CircleCI.” Accessed: Oct. 12, 2023. [Online].

Available: https://circleci.com/

[127] “Azure DevOps Services | Microsoft Azure.” Accessed: Oct. 12, 2023. [Online]. Available:

https://azure.microsoft.com/en-us/products/devops

[128] “Cloud Build serverless CI/CD platform | Google Cloud.” Accessed: Oct. 12, 2023.

[Online]. Available: https://cloud.google.com/build

[129] “Cloud Run: Container to production in seconds | Google Cloud.” Accessed: Oct. 12,

2023. [Online]. Available: https://cloud.google.com/run

[130] “tsenart/vegeta: HTTP load testing tool and library. It’s over 9000!” Accessed: Oct. 01,

2023. [Online]. Available: https://github.com/tsenart/vegeta

[131] “App-vNext/Polly: Polly is a .NET resilience and transient-fault-handling library that

allows developers to express policies such as Retry, Circuit Breaker, Timeout, Bulkhead

Isolation, and Fallback in a fluent and thread-safe manner. From version 6.0.1, Polly

targets .NET Standard 1.1 and 2.0+.” Accessed: Oct. 01, 2023. [Online]. Available:

https://github.com/App-vNext/Polly

[132] “Quality of Service — Ocelot 1.0.0 documentation.” Accessed: Oct. 01, 2023. [Online].

Available:

https://ocelot.readthedocs.io/en/latest/features/qualityofservice.html?highlight=polly

#quality-of-service

[133] “Swarm mode overview | Docker Docs.” Accessed: Oct. 01, 2023. [Online]. Available:

https://docs.docker.com/engine/swarm/

[134] “Snyk | Developer security | Develop fast. Stay secure. | Snyk.” Accessed: Sep. 30, 2023.

[Online]. Available: https://snyk.io/

[135] “CWE - Common Weakness Enumeration.” Accessed: Sep. 30, 2023. [Online]. Available:

https://cwe.mitre.org/index.html

Francisco Pinto Sebastião 153

[136] “CVE - CVE.” Accessed: Sep. 30, 2023. [Online]. Available:

https://cve.mitre.org/index.html

[137] “Common Vulnerability Scoring System SIG.” Accessed: Sep. 30, 2023. [Online]. Available:

https://www.first.org/cvss/

[138] “Snyk Vulnerability Database | Snyk.” Accessed: Sep. 30, 2023. [Online]. Available:

https://security.snyk.io/

[139] “JSON Web Token Introduction - jwt.io.” Accessed: Sep. 30, 2023. [Online]. Available:

https://jwt.io/introduction

[140] P. A. Koen, H. M. J. Bertels, and E. J. Kleinschmidt, “Managing the front end of

innovation-part II: Results from a three-year study,” Research Technology Management,

vol. 57, no. 3, pp. 25–35, May 2014, doi: 10.5437/08956308X5703199.

[141] P. Koen et al., “Providing Clarity and A Common Language to the ‘Fuzzy Front End,’”

http://dx.doi.org/10.1080/08956308.2001.11671418, vol. 44, no. 2, pp. 46–55, 2001,

doi: 10.1080/08956308.2001.11671418.

[142] S. Nicola, E. P. Ferreira, and J. J. P. Ferreira, “A NOVEL FRAMEWORK FOR MODELING

VALUE FOR THE CUSTOMER, AN ESSAY ON NEGOTIATION,”

https://doi.org/10.1142/S0219622012500162, vol. 11, no. 3, pp. 661–703, Jul. 2012, doi:

10.1142/S0219622012500162.

[143] A. Graf and P. Maas, “Customer value from a customer perspective – a comprehensive

review,” Service Value als Werttreiber, pp. 59–87, 2014, doi: 10.1007/978-3-658-02140-

5_3.

[144] A. Osterwalder, Y. Pigneur, G. Bernarda, and A. Smith, Value Proposition Design: How to

Create Products and Services Customers Want, 1st ed. Wiley, 2014.

[145] J. Borza, “FAST Diagrams: The Foundation for Creating Effective Function Models

General Dynamics Land Systems,” 2011.

Francisco Pinto Sebastião 154

Annex A

A.1 Value analysis

This chapter presents the value analysis of this project. For that, the New Concept Development

Model is used, as well as the designation of the value to the client, the perceived value, and the

value proposition. Finally, a functional analysis is made.

A.1.1 New Concept Development Model

The New Concept Development Model is divided into three parts, those being the (1) engine,

the (2) key elements, and (3) environmental factors, which influence the previous two [140].

The engine is the center of the model, focusing on the vision, strategy, culture, resources, teams,

and collaboration [141]. There are five key elements, those being (1) opportunity identification,

(2) opportunity analysis, (3) idea generation, (4) idea selection, and (5) concept definition, and

these are analyzed in the following sections [140]. The environmental factors are considered

external factors (e.g., competition, marketplace trends, technologies) that influence the other

two parts of the model.

The key elements and how these are related are presented in Error! Reference source not f

ound. [141].

Figure 74 - The New Concept Development model

Francisco Pinto Sebastião 155

Looking at the key elements bidirectional arrows between them can be observed. This means

that there doesn’t necessarily exist a linear path to go through. There are also two incoming

arrows, pointing at the two distinct elements – Opportunity Identification and Idea Generation

and Enrichment –, meaning that these two are the possible starting points for the analysis.

Lastly, the outgoing arrow leaving the element of Concept Definition to the exterior is the last

step of the process.

A.1.1.1 Opportunity identification

Opportunity identification consists of the analysis of opportunities and threats inherent to the

business. The main contributors are factors such as cultural tendencies, resources, and the

economy, among others [141].

The opportunity arises from the need to understand how the microservice architecture can

respond in the context of critical systems to the ever-growing rising challenges of cybersecurity,

specifically in how AI (i.e., machine learning) may assist, and having these into account, in how

it affects systems operational resilience. It is known that when systems are hit or flooded with

attacks, such as DDoS, even if resilient and with a great number of resources (i.e., computational

resources) these will most likely be impacted in their performance and availability even if it is a

small impact.

As presented in the Relevant studies and papers section, artificial intelligence can assist in the

detection or prediction of possible malicious attacks on systems, and with these paired with a

microservice architecture, knowing its underlying characteristics, such as scalability and

resilience, it would be interesting in learning how these would respond accordingly for the

systems to maintain their overall availability, performance, and operational resilience, or at

least to reduce the impacts of the attacks.

A.1.1.2 Opportunity analysis

In opportunity analysis, the market and the probability of success of the identified opportunity

should be studied. For this, planning and advantage assessment are made use of, depending on

the business setting and its resources [141].

According to what was presented in section 2.1, current literature related to this subject is

practically nonexistent, since these only cover or investigate some of the aspects this

dissertation seeks to explore such as the detection of attacks using AI or the usage of security

mechanisms (e.g., authentication and authorization) to strengthen systems security. None

investigate the aspect of the operation resilience of the systems, in how these “bounce back”

or respond to attacks or the combination of these aspects.

By understanding how all these aspects correlate to each other when combined, the results of

this dissertation could offer an interesting solution or path for both industry and academia to

pursue to elevate microservice architecture-based systems security and operational resilience.

156 Francisco Pinto Sebastião

A.1.1.3 Idea generation and enrichment

With an opportunity properly identified and analyzed, idea generation and enrichment can

begin, turning the identified opportunity into concrete idea(s) [141].

The predefined idea is to design and implement a software prototype following the

microservice architecture that aims to test the more relevant concepts for its adoption in the

migration of critical systems. The relevant concepts would be the adoption of artificial

intelligence for the detection of attacks and how these can be leveraged in maintaining the

prototype's overall resilience, availability, and performance at optimal levels.

A.1.1.4 Idea selection

The investment in the selected idea(s) must be justified, as it is important to ensure that the

idea(s) guarantee(s) a return [141].

The predefined idea was selected by default since it is the one believed to be more relevant in

the context of this dissertation.

A.1.1.5 Concept definition

The concept definition presents the selected idea and its advantages [141].

To design and implement a software prototype that can prove the utility of the microservice

architecture in the context of a critical system paired with artificial intelligence for the detection

of attacks and how it can help maintain operational resilience.

A.1.2 Value

Value is defined according to the needs, criteria, interests, benefits, attitudes, and preferences,

and it can vary according to distinct perceptions [142]. These variations among perceptions

could be verified between the product developer (i.e., goods or services) and the client. This

means that the value has a quantity of subjective nature.

In this dissertation’s context, the value resides in understanding how the microservice

architecture can position itself when facing cybersecurity challenges with artificial intelligence

as a resource and how this impacts operational resilience. Should this position turn

advantageous, it could help set a precedent in how microservices are secured and their

operational resilience maintained or elevated to a higher standard.

A.1.2.1 Value to the client

Value to the client consists in the perception that the client has over a determined product or

service [142]. This perception may also differ from client to client, according to the context and

experience of each, meaning that value is influenced by a plethora of factors, as well as needs

and preferences [143]. Value to the client can be considered positive if the client believes that

he, or she, will incur more benefits than losses when acquiring a product or service.

Francisco Pinto Sebastião 157

When it comes to the dissertation subject, the client would be academia and the industry as

these can look at the work performed in this dissertation as guidance (i.e., a path) for future

research in the same or different concepts, in the case of academia, or the implementation in

a real-world scenario, in the case of the industry.

A.1.2.2 Perceived value

Perceived value is related to the expected value by the client and the utility value, residing in

the tradeoff between the initially developed expectations (i.e., before acquiring a product or

service) and what is received (i.e., after acquiring a product or service) by the client [143]. It can

also vary from client to client.

In this context, it is important to evaluate what are the benefits and sacrifices, for the client, in

this study. In terms of benefits, it is expected that the microservice architecture-based critical

systems will benefit from a higher level of security coming with the aid of an artificial

intelligence that detects attacks and with this detection can help the system's defense, turning

it more resilient. When it comes to sacrifices, these can result in a slight decrease in

performance due to the addition of the artificial intelligence mechanism, and in higher costs of

maintenance, although this last one can be negated if this dissertation proves its point, and in

that sense, by turning systems more secure, could help avoid the costs that come with

significant attacks.

A.1.2.3 Value proposition

Value proposition consists of how a business creates value, with a determined product or

service, to a group of potential clients, one of the aspects being in how they differentiate or

position themselves from the competition [144]. The value proposition must present the

strengths of the product or service while bringing clarity to potential doubtfulness, assuring a

better understanding from the client over the proposal.

This dissertation has the objective to understand what is the paper that microservices can

perform in the context of critical systems, and the inherent characteristics of these, in terms of

their operational resilience, when faced with cybersecurity challenges. To fulfill this objective,

a software prototype will be designed and implemented. As previously mentioned, a higher

level of security, aided by artificial intelligence in conjunction with the aspects of resilience and

scalability from microservices, would turn systems much more robust and with a higher degree

of operational resilience.

When it comes to the clients, which would be academia and the industry, it could lead to future

research on improving these aspects, to look at different aspects or offer a vision of how it could

be implemented in real-world scenarios.

158 Francisco Pinto Sebastião

A.1.3 Functional Analysis (FAST)

The creation of a Functional Analysis System Technique (FAST) diagram is important to better

define the objectives of a project or to lead to a clearer path to a solution, specifying its actions,

as well as their logical associations, and questioning the “Why?”, “How?”, “Who?”, and “When?”

[145]. The diagram should present the objective of the project and how it will be achieved,

making use of two limit functions, the higher order function (i.e., How) and the assumed

function (i.e., Why?), that are connected through an intermediate set of functions whose

responsibility is to explain and map the course of the process.

Error! Reference source not found. presents the dissertation's FAST diagram.

Analyzing the diagram above, the objective can be found at the bottom of the diagram

“Understand if the microservice architecture can turn critical systems more secure with the aid

of AI and resilient”. It is necessary to understand how that can be accomplished, considering

research and investigation. All the functions will be conducted by the student. On the left side,

the higher order function “Investigate how the microservice architecture can address

cybersecurity with the aid of AI and operational resilience in critical systems”, followed by basic

and secondary functions. Finally, the assumed function “Demonstrate that the microservice

architecture can give critical systems a higher degree of security with the aid of AI and

resilience”.

Figure 75 - FAST diagram for this dissertation

Francisco Pinto Sebastião 159

Annex B

B.1 Results per query on B-On and ScienceDirect

Figure 76 - Number of results presented by B-On and ScienceDirect using the query

“microservices operational resilience OR microservices resilience”

0

3
5

6

11

2

5

9
10

24

7

16

20

31

20

0

5

10

15

20

25

30

35

2018 2019 2020 2021 2022

ACM ScienceDirect IEEE Xplore

2
6

4

9

21

6

13
11

15

43

9

18

28

41

66

0

10

20

30

40

50

60

70

2018 2019 2020 2021 2022

ACM ScienceDirect IEEE Xplore

160 Francisco Pinto Sebastião

Figure 77 - Number of results presented by B-On and ScienceDirect using the query

“microservices cybersecurity OR microservices cyber security”

Figure 78 - Number of results presented by B-On and ScienceDirect using the query

“microservices artificial intelligence”

Figure 79 - Number of results presented by B-On and ScienceDirect using the query “artificial

intelligence cybersecurity OR artificial intelligence cyber security”

1
6 7

14

29

6

13
16

35

63

8

22

35

63

83

0

10

20

30

40

50

60

70

80

90

2018 2019 2020 2021 2022

ACM ScienceDirect IEEE Xplore

35 57 82 99
175

92
149

245

415

748

258

475

811

1000

1267

0

200

400

600

800

1000

1200

1400

2018 2019 2020 2021 2022

ACM ScienceDirect IEEE Xplore

Francisco Pinto Sebastião 161

B.2 Container level process views with more outcomes

Figure 80 - Process view of the container level of the system regarding the execution of a fund transfer with all

possible outcomes

162 Francisco Pinto Sebastião

Figure 81 - Process view of the container level of the Payment Service container regarding

payment execution with all paths

Francisco Pinto Sebastião 163

B.3 Cloud Run additional configuration options

Figure 82 – Cloud Run container options regarding general and capacity options

164 Francisco Pinto Sebastião

Figure 83 – Cloud Run container options regarding execution environment, environment

variables, secrets, health checks, and cloud SQL connections

Francisco Pinto Sebastião 165

Figure 84 – Cloud Run network options

Figure 85 – Cloud Run security options

