
Authority Handover Procedure and Safety
Decision Strategy in Unmanned Aerial
Vehicles

GLEIZIELLY ALVES FERREIRA
outubro de 2023

Authority Handover Procedure and
Safety Decision Strategy in
Unmanned Aerial Vehicles

Gleizielly Ferreira

Dissertation submitted in partial fulfilment of the requirements for the
Master’s degree in Critical Computing Systems Engineering

Supervisor: Dr. Eduardo Tovar
Co-Supervisor: Dr. Sérgio Penna

Evaluation Committee:
President:
Luis Miguel Pinho, ISEP

Members:
David Pereira, ISEP
Eduardo Tovar, ISEP

Porto, October 3, 2023

iii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

The work presented in this document is original and authored by me, and performed in
the scope of the Master’s degree in Critical Computing Systems Engineering.

I have not plagiarised or applied any form of undue use of information or falsification of
results along the process leading to its elaboration, all references have been acknowledged
and fully cited, and all text was originally produced by me (except when duly noted).

I further declare that I have fully followed the Code of Good Practices and Conduct of
the Polytechnic Institute of Porto.

Porto, Porto, October 3, 2023

v

Abstract

Over recent years, Unmanned Aerial Vehicles (UAVs) applications have become popular in
different areas, such as aerial image acquisition, agriculture, inspection and maintenance,
mapping, and delivery services. Some of these services require the ability to fly UAVs Beyond
Visual Line of Sight (BVLOS) to cover greater distances.

Data provided by onboard instruments control the BVLOS operation. The flight controller
is responsible for directing the drone flight by controlling the motor’s speed and gathering
sensor data. The relevant information about the aircraft, such as position, altitude, speed,
and direction of flight, are transmitted via a radio link that informs an operator or a Ground
Control Station (GCS).

In some drone architectures, there is also an extra computer known as a companion computer
or mission computer. They are responsible for providing more intelligence to the flight
controller by changing flight parameters. The tasks running on a companion computer can
add the capacity to make intelligent decisions during autonomous flight or emergencies,
for instance, when the drone loses the radio link with GCS. In addition, for complex drone
operations in larger coverage areas, it is necessary to transfer wireless communication links
from one access point to another without experiencing connectivity loss. This procedure is
known as Handover, and there is much research in this area.

Therefore, studies in this field are still needed to find better solutions to avoid failures and
increase public and regulatory acceptance of BVLOS operations with UAVs. In this context,
the thesis intends to address solutions to the security authorization handover procedure and
addresses security strategies in case of a loss of connection.

Keywords: Unmanned Aerial Vehicles, Beyond Visual Line of Sight, Authority Handover

vii

Resumo

Durante os últimos anos, a utilização de Veículos Aéreos Não Tripulados (VANTs) vem se
tornando popular em diferentes áreas como agricultura, inspeção e manutenção de estru-
turas, mapeamento e serviços de entregas. Alguns desses serviços exigem a capacidade de
voar VANTs além do campo de visão (BVLOS) para cobrir distâncias maiores.

Os dados fornecidos pelos instrumentos de bordo controlam a operação BVLOS. O contro-
lador de voo é responsável por direcionar a aeronave controlando a velocidade dos motores e
coletando dados dos sensores. Alguns dados do veículo, como posição, altitude, velocidade
e direção do voo, são transmitidos por meio de um link de rádio que informam operadores
ou uma estação de controle em solo.

Em algumas arquiteturas de VANTs, há também um dispositivo extra conhecido como com-
putador complementar ou computador de missão. Eles são responsáveis por fornecer in-
teligência ao controlador de voo devido a maior capacidade de processamento. As tarefas
executadas em um computador de missão podem agregar a capacidade de tomar decisões
inteligentes durante o voo autônomo ou em situações de emergências, por exemplo, quando
o veículo perde a conexão com a estação de controle em solo.

Para operações de VANTs em áreas de maior cobertura, é necessário transferir a conexão
de comunicação sem fio de um ponto de acesso para outro sem que o veículo experien-
cie perda significativa de conectividade. Esse procedimento é conhecido como handover,
e há muita pesquisa nessa área. Entretanto, ainda existem preocupações em torno das
atuais tecnologias em termos de confiabilidade de comunicação, cibersegurança e controle
autónomo.

Portanto, estudos nesta área ainda são necessários para encontrar melhores soluções para
evitar falhas e aumentar a aceitação pública e regulatória das operações BVLOS com VANTs.
Neste contexto, a tese aborda soluções para o procedimento de transferência de autorização
do controle do veículo e aborda estratégias de segurança em caso de perda de conexão com
a estação de controle.

ix

Acknowledgement

This thesis would not have been possible without the support of some people. I can’t let
away this opportunity without naming some more impactful ones.

Firstly, I express my gratitude to Professor Dr. Ênio Filho for inviting me to join CISTER
and for inspiring my academic journey since graduation. "Primeiro acenda um LED, depois
domine o mundo." his fun phrases still resonate and motivate my pursuit of knowledge.

I also want to thank my advisor, Dr. Sérgio Penna, for his support and guidance throughout
this research journey. His expertise, patience, and insightful feedback are essential to com-
pleting this thesis. I would also like to thank my colleague, RúbeN Cruz, for his support and
valuable insights during this project.

I want to thank everyone at CISTER, particularly my supervisor, Dr. Eduardo Tovar, for their
support and for providing the necessary resources and facilities for conducting this research.

A special sign of gratitude to Márcia Rocha, a friend from graduation, master, and for life,
who has been a source of support throughout this time. I couldn’t go through all these
challenging moments without her by my side.

Lastly, I want to acknowledge the most significant support from my family, particularly my
parents and my sister. Their love, constant encouragement, and support have motivated me
despite the distance. Without their incredible efforts throughout their lives, none of what I
am and aspire to become would have been possible.

Thank you all for being part of this journey!

This work was partially supported by National Funds through FCT/MCTES (Portuguese
Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/
04234/2020) by FCT and the EU ECSEL JU under the H2020 Framework Programme,
within project ECSEL/0010/2019, JU grant nr. 876019 (ADACORSA); The JU receives
support from the European Union’s Horizon 2020 research and innovation program and
Germany, Netherlands, Austria, France, Sweden, Cyprus, Greece, Lithuania, Portugal, Italy,
Finland, and Turkey. The ECSEL JU and the European Commission are not responsible for
the content of this paper or any use that may be made of the information it contains.

xi

Contents

List of Figures xiii

List of Source Code xv

List of Acronyms xvii

1 Introduction 1
1.1 Overview . 1
1.2 Research Motivation and Context . 1
1.3 Research Objectives . 2
1.4 Contributions . 2
1.5 Thesis Organization . 3

2 Unmanned Aerial Systems 5
2.1 Unmanned Aerial Vehicles . 5
2.2 Beyond Visual Line of Sight Operations 6
2.3 Authority Handover Procedure . 8

3 Simulation technologies 9
3.1 Dronecode Foundation . 9

3.1.1 PX4 Autopilot . 9
3.1.2 MAVLINK . 10
3.1.3 MAVSDK . 10
3.1.4 QGroundControl . 10

3.2 Gazebo . 11
3.3 Ardupilot . 11
3.4 MavProxy . 12
3.5 PixHawk . 13
3.6 Cube Orange . 13
3.7 Jetson Nvidia . 14

4 Authority Handover Procedure 17
4.1 Application Scenario . 17
4.2 System Architecture . 18
4.3 Mission Computer . 18

4.3.1 On Load . 19
4.3.2 On Mission . 20
4.3.3 On Handover . 21

4.4 Ground Control Stations . 21
4.5 Messages Sequence . 25
4.6 Handover Region . 28

xii

4.6.1 Circular Geofence . 28
4.6.2 Mission Waypoint Detection . 30
4.6.3 Polygonal Geofence . 31

4.7 Safety and Security . 33

5 Software and Hardware Architecture 35
5.1 Testbed Architecture . 35
5.2 Flight Controller Integration . 38
5.3 Integration with Adacorsa Partners . 40

6 Evaluation and Results 43
6.1 Simulation Results . 43

6.1.1 Authority Handover . 44
6.1.2 Authority Check . 47
6.1.3 Emergency Procedure . 49

6.2 Flight Controller Integration Results . 50
6.3 Integration Results with Adacorsa Partners 54

7 Conclusion and Future Work 57

Bibliography 59

xiii

List of Figures

2.1 Operation Categories . 7

3.1 QGroundControl: Vehicle parameters configuration 11
3.2 Cube Orange . 14
3.3 Jetson NVIDIA . 15

4.1 Authority Handover Procedure . 17
4.2 System Architecture . 18
4.3 Mission Computer: Main Function . 19
4.4 Mission Computer: Server Messages . 20
4.5 Mission Computer: Handover . 21
4.6 Ground Control Stations main function 22
4.7 Ground Control Stations Commands . 23
4.8 Ground Control Stations Messages . 24
4.9 Message Sequence diagram . 27
4.10 Circular Geofence . 28
4.11 Circular Geofence Limitation . 30
4.12 Mission Waypoint Detection . 31
4.13 Polygonal Geofence . 32

5.1 Simulation Setup . 35
5.2 Simulation Softwares . 36
5.3 GAIA 160MP with a Cube orange . 38
5.4 Hardware Setup . 39
5.5 Hardware Integration with Adacorsa Partner 41

6.1 Mission Plan . 43
6.2 Start Mission Command . 44
6.3 Authority Handover Messages . 45
6.4 Authority Handover Messages Sequence 46
6.5 Authority Handover Messages Sequence 47
6.6 Authority Check GCSA . 48
6.7 Authority Check GCSB . 49
6.8 Emergency Procedure . 50
6.9 GCSA and Mission Computer: Delivery flight Handover 51
6.10 GCSA and Mission Computer: Delivery flight Handover 52
6.11 GCSA and Mission Computer: Return Flight Handover 53
6.12 Integration Adacorsa Partner Results:Drone 54
6.13 Integration Adacorsa Partner Results . 55
6.14 Integration Adacorsa Partner: Log Mission Computer 56

xv

List of Source Code

4.1 Handover Procedure in the Mission Computer 25
4.2 Haversine Function. 29
4.3 Point in Polygn Function. 32
5.1 Terminal Commands to start simulation 36
5.2 Flight Data Acquisition using MAVSDK 37
5.3 Multlink Configuration Script . 39
5.4 Service File on Linux . 40
5.5 Enable Service . 40
5.6 Serial Communication Setup between Mission Computer and Flight Controller 40
5.7 Data Struct from TCP Provider . 41
5.8 Flight Data Acquisition using TCP/IP . 41

xvii

List of Acronyms

BVLOS Beyond Visual Line of Sight.

C2 Command and Control.

EASA European Union Aviation Safety Agency.
EVLOS Extended Visual Line of Sight.

FC Flight Controller.

GCS Ground Control Station.
GPS Global Positioning System.

IMU Inertial Measurement Unit.

MAVLink Micro Air Vehicle Link.
MC Mission Computer.

QGC QGroundControl.

UAS Unmanned Aircraft System.
UAV Unmanned Aerial Vehicle.

VLOS Visual Line of Sight.

1

Chapter 1

Introduction

1.1 Overview

Unmanned Aerial Vehicles (UAVs) technologies introduce several advantages in both the
industrial and academic fields. The vehicles are characterized by high maneuverability, a
wide variety of usage, and low cost. As a result, UAVs have become widespread in various
fields, such as the agricultural sector (Rejeb et al. 2022), delivery logistics (Benarbia and
Kyamakya 2022), military and medical (Ayamga, Akaba, and Nyaaba 2021).

Given the number of applications for UAVs, it is necessary to have an integrated embedded
system to deal with all required tasks. It includes a set of sensors, such as the Inertial Mea-
surement Units (IMUs), to specify the orientation and stability, and the Global Positioning
System (GPS) for positioning. Other systems can also be integrated to perform specific
tasks, such as a radar system and cameras to collect data or to detect and avoid obstacles
(Bigazzi et al. 2022).

Elmeseiry, Alshaer, and Ismail 2021 investigated and classified the Unmanned Aircraft Sys-
tem (UAS) accornding to applications. They also reviewed future directions in industry/re-
search interest and the challenges and limitations of UAVs, such as battery charging, collision
avoidance, and security. Politi et al. 2021, in their work, reviewed the technologies to enable
Beyond Visual Line of Sight (BVLOS) applications. They concluded that autonomous flight
capability and communication are paramount to BVLOS operations in UAS.

Nonetheless, studies in this field are still needed to find better solutions to avoid failures and
increase public and regulatory acceptance of BVLOS operations with UAVs. The necessity
for constant communication links and the vehicle’s ability to change control authority be-
tween ground stations while moving is a challenge that must be investigated. Given what
has been said, this work aims to increase the autonomous capacity of an unmanned aerial
vehicle by adding an extra computer to handle the challenges of the BVLOS operations.

1.2 Research Motivation and Context

The use of UAV in Beyond visual line of sight (BVLOS) operations is attractive to the
industry because it can increase the efficiency of drone flights by reducing the need for
a visual observer and enabling the vehicle to fly further distances. These can save time
and resources in the agriculture, energy, and delivery industries. Also, BVLOS flights allow
more comprehensive data collection, especially in areas that are difficult to access by ground
vehicles. As a result, it can be helpful in industries such as natural resource management,
disaster response, and infrastructure inspection. In addition, BVLOS flights can help reduce

2 Chapter 1. Introduction

the risk of accidents and injuries by allowing drones to fly over hazardous or difficult-to-reach
areas without putting human operators in harm’s way (Hartley, Henderson, and Jackson
2022).

However, as the authors explained in (Matalonga et al. 2022), the BVLOS operation lacks
the technical capabilities to ensure that the vehicle does not threaten public safety. In addi-
tion, there are restricted regulations for BVLOS drone operations because of concerns about
safety, privacy, and security. Thus, this thesis contributed by improving safety operations in
large coverage areas through the support of multiple communication ground links and safe
authority handover procedures. Additionally, the thesis increased the autonomous capacity
by adding a mission computer on board the vehicle to handle drone behavior.

This thesis has been funded by Research Centre in Real-Time and Embedded Computing
Systems (Cister 2023), a participant in the Adacorsa (Airborne Data Collection on Resilient
System Architectures) project. The Adacorsa project aims to strengthen the European drone
industry and increase the acceptance of BVLOS operations by developing and demonstrating
technologies for safe, reliable, and secure drone operations (Adacorsa 2023).

1.3 Research Objectives

The main objective presented in this thesis is to review the most recent literature, practices,
and regulations and implement a simulation of the complete process of the UAV authority
handover between two ground control stations. Besides that, the thesis pretends to increase
the vehicle’s autonomous capability by adding an extra processor unit to handle unexpected
situations. In particular, the thesis delivers:

• A systematic review of the literature;

• Algorithm for an authorization handover procedure;

• Discussion for an emergency procedure;

• Configuration of the simulators;

• Configuration of the Mission Computer;

• Execution hardware simulation;

• Documentation of all the results obtained.

1.4 Contributions

In this thesis, the main contributions are:

• Overview of Unmanned Aerial Vehicles architectures;

• Overview of different drone operations, focusing on the challenges of Beyond Visual
Line of Sight (BVLOS) operations;

• Overview of handover techniques for BVLOS operations;

• Overview of simulation technologies for Unmanned Aircraft Systems (UAS);

• Implementation of an authority handover procedure;

• Integration with Adacorsa partner projects;

1.5. Thesis Organization 3

• Validation of authority handover procedure in simulations and real-world scenarios;

• Demonstration of requirements from the Adacorsa project.

1.5 Thesis Organization

The present text is composed of seven parts. Chapter 1 presents the thesis’ theme by
describing and contextualizing the problem and enumerating the objectives this work aims
to achieve. In chapter 2, there is a brief review of recent works that have motivated this
thesis. In chapter 3, the chapter presents the simulation tools and other technologies
that supported the thesis development. Chapter 4 describes the proposed solution and
strategies to implement the authority handover procedure. Also, it highlights the progress
made in this research regarding the Handover Region selection and provides an overview of
message safety and security and insights into emergency procedures. Chapter 5 describes
the technical approach to implement the authority handover procedure. Whereas Chapter
6 presents the results obtained. Finally, Chapter 7 discusses the results and thoughts about
future work and developments related to these projects.

5

Chapter 2

Unmanned Aerial Systems

This chapter scans recent works that have motivated this thesis. Section 2.1 clarifies some
concepts, defines some components in the UAV architecture, and discusses some com-
munications and drone networks. Section 2.2 analyses the challenges and limitations and
discusses, from a legal point of view, the regularization of drones in the BVLOS operations.
Finaly, Section 2.3 shows handover techniques already studied in the last years.

2.1 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) are aircraft designed to be piloted remotely or pre-
programmed to fly specific routes. In both cases, the interoperability of multiple systems
is expected to ensure safe flight operations. According to European Union Aviation Safety
Agency (EASA), an UAS refers to UAV and all apparatus to control it remotely. It includes
the vehicle system, the person or team on the ground controlling the flight, and the de-
vices necessary to connect both, such as ground control systems, transmission systems, and
software.

The several applications justify the different compositions of a UAS depending on their pur-
pose. Typically it consists of several key components that together perform the designed
task. For example, the propulsion system is composed of motors, propellers, and batteries
that provide the power and thrust necessary for flight. The sensors, such as GPS, ac-
celerometers, gyroscopes, and magnetometers, provide information on the drone’s position,
orientation, and movement. The Flight Controller (FC) is the central processing unit that
collects the data from all these devices and uses them to manage and controls the drone’s
flight and navigation, guaranteeing part of its autonomy.

The Ground Control Station (GCS) comprises ground-based hardware components and soft-
ware that can maintain the Command and Control (C2) link to the onboard system. The
ground control can also enable operators to plan missions onto a UAV and view incoming
sensor data. Since real-world operations are unpredictable and prone to non-deterministic
behaviors, maintaining a reliable Command and Control link is fundamental for the safe
operation of the UAV.

The Communication System comprises radio transceivers, antennas, and other components
that allow the vehicle to transmit data to ground systems or be controlled remotely. The
drone also sends flight data and telemetry back to the ground controller over the Wi-Fi
link, Mobile communication such as 4G/5G/LTE, and Zigbee. These are some of the most
commonly used communication protocols for drones, and the choice of protocol depends on

6 Chapter 2. Unmanned Aerial Systems

the specific requirements of the UAV system, including the range, data transfer rate, and
reliability needed for the mission (Noor et al. 2020).

In their work, Neji, Mostfa, and Sebbane 2019 analysed the most suitable radio commu-
nication system between a UAV and a GCS in two different application scenarios. First,
they identify some relevant criteria that cover most use cases, such as communication
range between the vehicle and the pilot, energy consumption, infrastructure cost, security,
throughput, and latency. In addition, they investigated emergent technologies such as 5g
and LP-WAN. Also well-consolided tecnologies such LOra, Wi-fi. They conclude that the
5G will provide good performance, like low power consumption and high-security levels. Al-
though LP-WAN technologies scores are likely to increase soon, considering they are still
under development.

Some drone architectures have different devices designed to operate a specific task. The
payloads are extra weight that can be transported in the UAV. It can be equipment such as
cameras, additional sensors, tools, armaments that the drone carries for specific missions, or
other determined task-specialized devices. For example, the mission computer, also called a
companion computer, can increase the drone’s processing capacity. It can include process-
ing images, pre-processing information from advanced sensors, Detect and Avoid Systems,
or actuating auxiliary motors. Besides, the mission computer can unlock the potential of
autonomous flights by increasing the drone’s capacity to make intelligent decisions during
flight. All these components work together to allow UAVs to perform various missions, from
aerial photography and surveying to delivery and military operations or unlock the drone’s
capacity to autonomous flight.

2.2 Beyond Visual Line of Sight Operations

The European Union Aviation Safety Agency (EASA 2022) defines three operational cate-
gories based on UAVs’ range: Visual Line of Sight (VLOS), Extended Visual Line of Sight
(EVLOS), and BVLOS. Figure 2.1 illustrates all three types of UAV operation. In practice,
VLOS operations allow the remote pilot to control the aircraft’s flight path in his visual
range, typically up to a few kilometers. The remote pilot must maintain continuous unaided
visual contact with the aircraft to avoid collisions with other aircraft, people, and obstacles.

In EVLOS operations, the UAVs are operated beyond the operator’s visual range but aided
by technological means or with one or more visual observers who keep the UAV in sight and
communicate with the remote pilot. This category typically covers UAVs that are operated
up to a few tens of kilometers from the operator. The remote pilot has direct control of
the UAS at all times and must maintain uninterrupted situational awareness of the airspace
in which the operation is being conducted.

In contrast, in the BVLOS operations, the UAVs are operated beyond the operator’s and
observer’s visual range. Consequently, BVLOS operations are complex and risky and require
advanced technologies, such as autopilot software, communication systems, and real-time
data links, to ensure safe and accurate flight.

The BVLOS operation has many application scenarios where the operator needs to fly the
UAV over long distances or out of sight, such as delivering packages, agriculture, surveying,
and inspection. However, strict regulations for BVLOS operations have been established to
ensure safety and prevent accidents.

2.2. Beyond Visual Line of Sight Operations 7

Figure 2.1: Operation categories regulated by EASA (from
www.revistapesquisa.fapesp.br(Suzel Tunes 2021))

The Portuguese Civil Aviation Authority (ANAC 2022) considers the BVLOS as a specific
category and only allowed with a specific clearance. In addition, it must comply with several
requirements, such as geofenced areas and operational risk analysis and mitigation.

In (Matalonga et al. 2022), the authors reviewed the regulatory and technological aspects
of unlocking autonomous BVLOS operations of UAVs. Also, they summarised the state-of-
the-art quality assurance of critical software-intensive systems. In addition, they presented
the RAPID Project, an example use case for Autonomous BVLOS Operations. The project
demonstrated the capacity of a swarm of autonomous UAS to survey a bridge in a busy
environment. Finally, the authors identify requirements for robust autonomous BVLOS
operations. One of these requirements is to establish reliable communication between the
UAS and the ground system.

In (Andersen et al. 2021), they tested the MultiRX module, a multiplexer designed to ac-
cept multiple connections to the same Flight Controller (FC). The work provided a reliable
functionality for BVLOS operations by allowing the control of the vehicle by multiple pilots
in different locations. Their project was developed in compliance with the communica-
tion requirements for BVLOS operation described in Specific Operations Risk Assessment
(SORA), an EASA framework that imposes requirements on UAV operations. However, this
work does not explore the vehicle autonomy feature once the tests only were conducted by
manual control.

In (Politi et al. 2021), the authors surveyed the main BVLOS challenges for drone operation
and the emerging technology requirements. First, they listed the main challenges for BVLOS:
Security and Safety, Route Planning and Navigation, Communication, Object Detection, and
Collision Avoidance. Further, they identify several key areas to develop. It includes, among
other things, ensuring a reliable Command and Control (C2) link and advances in autopilot
systems focusing on more intelligent approaches of adaptive control technologies that can
sustain a higher degree of autonomy during flight.

Since the BVLOS operation requires sophisticated software, communication systems, and
the ability to monitor the UAV’s parameters, this work pretends to develop an authority
handover procedure to enable a BVLOS operation, considering the safety and reliable com-
munication between the vehicle and the ground system.

8 Chapter 2. Unmanned Aerial Systems

2.3 Authority Handover Procedure

In the context of unmanned aerial vehicles (UAVs), a handover (HO) refers to transferring
communication links from one network connection to another with minimal loss of quality or
connectivity. There are two HO scenarios of a UAV. The horizontal handover occurs when
the mobile device switches from one network to another of the same type (e.g., from one
Wi-Fi network to another). On the other hand, a vertical handover happens when the mobile
device switches from one network technology to another of a different type. For example,
switching between different generations of wireless technology (4G, 5G) or different types
of networks (e.g., Wi-Fi to cellular). In both cases, the goal of the handover is to provide
a seamless connection and reliable communication services during the UAV flight (Shayea
et al. 2022, pp. 11–13).

In (Angjo et al. 2021), the authors list several works that deal with the challenges of handover
in mobile drone networks. They analysed several works and grouped them based on the
approaches. In addition, they also introduced some issues related to drone operations and HO
management, such as the development of communications protocols designed considering
the drones’ mobility characteristics. Finally, they conclude that the integration of drones
into existing networks and their mobility issues are the current focus of the literature.

According to (Andersen et al. 2021), handover techniques are essential for Beyond Visual
Line of Sight (BVLOS) operations because they allow for maintaining uninterrupted com-
munication and transfer of control of the unmanned aerial vehicle (UAV) from one operator
or control station to another during the flight. In the literature, there are several works
about the handover procedure. In their survey (Shayea et al. 2022, pp. 16–27), the authors
examined and classified related works about handover management in future mobile net-
works. Besides that, the authors highlighted various research challenges, such as security
and mobility management. They affirm that security and safety issues will increase due to
drones’ massive growth and capability to cover larger areas.

With that in mind, this work implemented an authority handover procedure, a set of steps
and procedures followed to transfer a UAV’s control and responsibility from one ground
entity to another. The authority handover procedure involves verifying the readiness of
the receiving entity, communicating the current state of the UAV, establishing a secure and
reliable communication link, and confirming the transfer of control before the UAV is handed
over.

9

Chapter 3

Simulation technologies

This chapter presents an overview of some open-source projects that provide a range of
tools and resources to support the development of this work. Autopilot simulators are the
simulation tools relevant to the scope of this thesis since the main goal was to develop
software that mediates the communication between a flight controller and a ground control
station.

The two most relevant autopilot simulator candidates for this project are the PX4 from
Dronecode Foundation and Ardupilot. These two are arguably the most used and open-
source community-supported in the area, with various works related to Unmanned Aerial
Systems.

After this, Gazebo will be overviewed since both autopilots designed their modules, allowing
integration with this software. Also, two Ground Control Station software will be analyzed.
Later sections present the hardware utilized in this project.

3.1 Dronecode Foundation

Dronecode Foundation is an open-source, collaborative platform that provides tools and
technologies for developing unmanned aerial vehicle (UAV) applications and solutions. The
Dronecode platform is maintained by the Linux Foundation and includes a variety of projects.
Its open-source characteristic allows developers to collaborate, contribute, and build on
existing projects to create new and innovative solutions (Dronecode Foundation 2023).

Dronecode includes multiple projects, such as flight stacks, ground control stations, and
hardware abstraction layers. In addition, Dronecode projects consist of software tools,
libraries, protocols, and APIs, that enable developers to create new applications and ser-
vices UAS both in industrial and academic applications. The following subsections show an
overview of the projects supported by the Dronecode foundation that helped the development
of the current project.

3.1.1 PX4 Autopilot

PX4 Autopilot project is a flight control software for unmanned aerial vehicles (UAVs). It
provides a platform for autonomous flight control, navigation, and mission planning, enabling
developers to create custom UAV applications and solutions. Additionally, it is designed to
be safe, secure, and reliable, making it a trusted choice for UAV control. PX4 has advanced
features, including flight control, sensor management, communication with Ground Control
Station (GCS), and navigation and control algorithms (Dronecode 2023c).

10 Chapter 3. Simulation technologies

PX4 Autopilot supports a wide range of UAV hardware platforms, making it suitable for
various applications. In addition, the software is highly modular and configurable, allowing
developers to customize it to meet their specific needs.

3.1.2 MAVLINK

Micro Air Vehicle Link (MAVLink) is a lightweight communication protocol widely used in
UAS and UAV components. It provides a compact and efficient way of transmitting data
between UAVs, ground control stations, onboard sensors, or companions computers. In
addition, MAVLink is used to transmit telemetry data, including information about the state
of the UAV and its sensors, as well as commands from the ground station to the UAV
(Dronecode 2023a).

The protocol is designed to be easy to implement and can be used over various communi-
cation links, including serial links, Wi-Fi, and cellular networks. As a result, it is a protocol
widely used for GCS-based drone control, running in numerous Autopilot-based systems
such as ArdupilotMega, pxIMU Autopilot, SLUGS Autopilot, and of course, PX4 Autopilot
(Kwon et al. 2018).

Once MAVLink is designed as a lightweight and efficient communication protocol, messages
are not encrypted by default. This is because the process of encryption can add overhead
and latency. However, it is possible to transmit MAVLink messages over an encrypted VPN
or to encrypt the payload of MAVLink messages using an encryption library.

In (Allouch et al. 2019), the authors discussed the security threats of the MAVLink proto-
col. They proposed the MAVSec, a security-integrated mechanism for MAVLink which uses
encryption algorithms to improve the security of MAVLink messages exchanged in UAS.

3.1.3 MAVSDK

MAVSDK project is a set of libraries in different programming languages that provide an inter-
face for communicating with unmanned aerial vehicles (UAVs) using the MAVLink protocol.
The libraries are designed to be platform-agnostic and can be used on various operating
systems, including Linux, macOS, and Windows (Dronecode 2023b).

The MAVSDK supports multiple programming languages, including C++ and Python. In
addition, it provides a high-level API for accessing UAV information and sending commands,
making it ideal for developers who want to create a wide range of applications that interact
with UAVs.

In this work, the MAVSDK C++ library was used to obtain real-time data from the flight
controller, allowing the implementation of the software of the Authority Handover.

3.1.4 QGroundControl

QGroundControl (QGC) provides a graphical user interface for controlling and monitoring
UAVs and managing their missions. QGroundControl (QGC) communicates with UAVs using
the MAVLink protocol and supports various hardware devices and autopilots, including the
PX4 Autopilot (Dronecode 2023d).

The QGC project is compatible with multiple operating systems like Linux, macOS, Windows,
iOS, and Android. It connects to the UAV using MAVLink and reports essential status from
the vehicle and parameter information such as battery level, flight mode, and others.

3.2. Gazebo 11

The software allows users to input simple commands or complex, detailed autonomous
missions with multiple waypoints in a user-friendly interface. In this project, QGC was used
as the graphic interface to create and test the missions in a simulation since it provides
advanced features such as flight data analysis, vehicle parameters configuration (Figure
3.1), and offline map support. It was used to set up and execute autonomous missions that
defined waypoints, flight paths, and actions for the drone to follow.

Figure 3.1: QGroundControl: Vehicle parameters configuration

3.2 Gazebo

Gazebo is a set of open-source software frameworks to make developing high-performance
applications easier. It provides a flexible and realistic simulation environment that allows
developers to test and evaluate the behavior of complex robotic systems, including unmanned
aerial vehicles (UAVs) (Open Robotics 2023).

Gazebo provides a comprehensive API for creating custom plugins and simulations, making
it a highly flexible platform for robotic simulation to suit many different use cases. For
example, the PX4 community contributes to a set of Gazebo plugins necessary to assemble
UAV models with different sensor configurations. It includes various sensors and actuators
commonly used in UAVs, such as cameras, GPS, IMUs, and additional supplied plugins to
communicate with simulated hardware over MAVLink (PX4 2023a).

Gazebo is free, open-source, and supported on all major operating systems, such as Linux,
macOS, and Windows. Gazebo is conceived to simulate realistic conditions of the robotic
system and the surrounding environment. Its features allow more detailed observation and
analysis of the robotic’s system’s behavior. In addition, it supports robotics industry devel-
opers and academic researchers in testing and validating its projects.

3.3 Ardupilot

ArduPilot is an open-source autopilot software suite compatible with various hardware plat-
forms, including Pixhawk[3.5] and Cube Orange[3.6]. It serves as the brains behind au-
tonomous drone operations, providing the essential intelligence and control algorithms.

12 Chapter 3. Simulation technologies

ArduPilot offers many functionalities, encompassing waypoint navigation, mission load, teleme-
try, and fail-safe modes (Ardupilot 2023a).

Like PX4, ArduPilot is an open-source autopilot software, but it extends its versatility to
support a broad spectrum of unmanned vehicles, including drones, autonomous cars, boats,
ground rovers, and submarines. This project focuses on ArduCopter, which specializes in
stabilizing and controlling multi-copter drones, such as quadcopters, hexacopters, and oc-
tocopters. ArduCopter equips these vehicles with the necessary intelligence and control
algorithms, enabling autonomous or semi-autonomous operations.

ArduPilot offers an array of flight modes, including stabilizing, loiter, auto, and more. In this
context, we utilize the ’auto’ mode for executing autonomous missions. ArduPilot allows
vehicles to follow predefined waypoints along their mission paths. Additionally, the software
incorporates fail-safe mechanisms to ensure safe operation in signal loss or emergencies,
triggering actions like Return-to-Launch (RTL) procedures.

Furthermore, ArduPilot performs pre-configuration and comprehensive hardware checks to
confirm the vehicle’s readiness for flight. Procedures such as calibration and pre-arm checks
permit verifying the correct functionality of motors, servos, and sensors.

ArduPilot has an extensive range of built-in vehicles and is compatible with various external
simulators. This versatility allows ArduPilot to be tested in diverse UAS scenarios.

Lastly, ArduPilot benefits from an active open-source community continuously working on
software development and enhancements. This community support provide to users access
to documentation, tutorials, and third-party tools.

3.4 MavProxy

MAVProxy (Micro Air Vehicle Proxy) is an open-source command-line ground station soft-
ware designed primarily for controlling and monitoring unmanned aerial vehicles (UAVs) using
the MAVLink protocol. It is written in Python, providing flexibility and customization when
interacting with UAVs Ardupilot 2023b.

Like other ground control stations, MAVProxy is an intermediary between the operator and
the UAV, facilitating communication by relaying MAVLink messages. Its extensibility allows
users to create custom Python scripts and modules tailored to their needs. These scripts can
interact with the drone, process telemetry data, and implement custom control logic. Users
can send MAVLink commands and receive telemetry data through the MAVProxy command-
line interface, including commands like takeoff, land, change flight mode, set waypoints, and
more. It also offers map viewing and the capacity to send emergency commands, such as
pausing a mission or initiating a return to the mission’s origin (RTL).

MAVProxy’s ability to handle communication with multiple devices simultaneously is impor-
tant for managing multiple vehicles or ground control. It can also act as a router to send
drone data to other ground control stations such as QGroundControl or Mission Planner
and mission computers.

MAVProxy is commonly used during UAV software and hardware development and testing
phases, providing a means to interact with and monitor the drone’s behavior in a controlled
environment. To establish a connection with MAVProxy, it is necessary to specify the
communication link (e.g., serial port or network connection) and the corresponding serial or
IP address.

3.5. PixHawk 13

This project used MAVProxy only to enable real-time data acquisition during simulations.
However, due to its architecture based on the command line and the customization capacity,
it can also be a useful tool for sending commands from the Mission computer to the flight
controller without direct manual intervention.

This work employed MAVProxy for simulation purposes and routing telemetry data from
the flight controller to simulation tools. Meanwhile, QGroundControl served as a graphical
interface for map visualization and mission planning.

3.5 PixHawk

The Pixhawk system is an open-source hardware platform for UAV systems development.
It integrates a range of hardware components, including microcontrollers, sensors, com-
munication interfaces, and power management systems, in a compact and modular design.
Pixhawk open standards provide guidelines and mechanical and electrical specifications for
UAV control and navigation (Lorenz Meier 2023).

Pixhawk began as a project in research of autonomous flight idealized by Lorenz Meier
in 2008. Since 2014, The platform has been maintained and developed by the Dronecode
community, and new features and improvements are regularly added to its repository. Its main
goal is to integrate and maintain hardware components, helping UAV application developers
reduce costs and time of designing and consequently focusing more on the application’s
functionality (Auterion 2023).

Pixhawk offers many features and capabilities for controlling and navigating UAVs. It sup-
ports various communication protocols, including MAVLink, and can be easily integrated
with other UAV components and systems, such as ground control stations and mission com-
puters. It is designed to provide a reliable and flexible platform for various UAV applications,
including hobby and commercial drone projects and academic research.

3.6 Cube Orange

The Cube Orange autopilot is an integral component within a comprehensive ecosystem of
autopilot modules and carrier boards, forming part of the Cube series of flight controllers.
Designed for unmanned aerial vehicles (UAVs), this versatile device boasts a reputation for
exceptional reliability. Cube Orange is equipped with redundant sensors and power supplies
to ensure uninterrupted operation in the face of potential sensor or power source failures
(Ardupilot 2023c).

This autopilot is the core hardware responsible for stabilizing and controlling UAV flight.
Its compatibility extends to a broad spectrum of UAV types, ranging from multicopters
such as hexacopters to fixed-wing aircraft, making it suitable for various applications. Cube
Orange can operate on the foundation of open-source flight control software such as PX4
or Ardupilot, offering users the flexibility to customize and tailor the flight controller to their
specific requirements. This open-source nature provides full access to the software code,
empowering users to enhance, modify, and actively contribute to its ongoing development
(PX4 2023b).

Furthermore, Cube Orange integrates with high-precision GPS receivers, ensuring precise
positioning and navigation—a vital feature for tasks like autonomous flights. Its adaptability
extends to various payloads, including cameras, sensors, and communication systems. With

14 Chapter 3. Simulation technologies

connectivity options encompassing UART, CAN bus, and I2C, it can interface effortlessly
with various peripherals. Cube Orange was linked to an onboard computer through a serial
connection in this work, facilitating real-time vehicle monitoring.

Figure 3.2: Cube Orange (from https://ardupilot.org/copter/docs/common-
thecubeorange-overview.html(Ardupilot 2023c))

3.7 Jetson Nvidia

In this work, Jetson da Nvidia was chosen as a mission computer. Its processing capacity
was also leveraged as a Flight controller simulator. This computer stays on board in the
vehicle and operates using the data from the flight controller. The software running on this
device processed this data to achieve specific objectives.

This project utilized the mission computer to execute Handover procedures and establish
connections with two other ground-based computers through a multilink communication
channel encompassing wifi and LTE. However, it holds the potential for diverse applications,
such as logging flight data, automating commands during missions, implementing a detect
and avoid system, and various other functionalities.

3.7. Jetson Nvidia 15

Figure 3.3: Jetson NVIDIA (from https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/(Nvidia 2023))

17

Chapter 4

Authority Handover Procedure

This chapter presents the system design to solve the problem enunciated in 1. First, sec-
tion4.1 describes the application scenario of the UAV in a Beyond Visual Line of Sight
operation. Then, section 4.2 provides an overview of the proposed design solution. Sections
4.3 and 4.4 detail the Mission Computer and Ground Control Stations software implemen-
tation. Section4.5 explains the sequence of the messages exchanged between the software
components. Section 4.6 highlights the progress made in this research regarding the Han-
dover Region selection. Lastly, Section 4.7 provides an overview of message safety and
security and insights into emergency procedures.

4.1 Application Scenario

The system is compounded by two GCSs and the UAV. The vehicle must be able to deliver
a packet crossing the authority handover region and turn back to the launch point. Figure
4.1 illustrates the proposed scenario to simulate a drone authority handover procedure.

Figure 4.1: Authority Handover Procedure

At the start, the vehicle receives a mission plan with important parameters to conclude the
task, such as destination, waypoints, flight speed, and rally points. When the vehicle is
inside the coverage area, each GCS shall be able to receive a vehicle heartbeat and send
commands during the flight, if necessary. A wireless access node onboard UAV will connect
to already-known ground control stations.

18 Chapter 4. Authority Handover Procedure

Upon entering the handover region, the HO module must notify the GCS-A that it will
transfer the authority over the mission to the GCS-B. If communication with the GCS-A is
successful, the HO module will respond only to the GCS-B. The reverse happens on the trip
back to the launch point.

4.2 System Architecture

The application scenario is based on package delivery. This work pretends implementing
an application layer software using the C++ programming language and API Mavsdk. The
implemented software (also referred to as "HO module" or "authority handover system" in
this work) runs at Mission Computer and intermediate the communication between Ground
Control Station and Flight Controller.

The Authority Handover System are able to collect information about the status of the
vehicle, such as coordinates, estimated battery remaining, altitude, and speed. When the
Mission Computer (MC) receives a mission or command from GCSs, the HO module can
accept or reject the commands depending on the information gathered in the vehicle, and
the authority region. The module also sends the status of the vehicle to the intended GCS.
Figure 4.2 depicts the proposed solution.

Figure 4.2: System Architecture

4.3 Mission Computer

The mission computer is responsible for controlling the drone behavior according to the
data gathered by the flight controller. It has three central states: on_load, on_mission,
on_handover. In each state, it has different behaviors or tasks. The main responsibility of
each state is listed below.

4.3. Mission Computer 19

4.3.1 On Load

The initial task of the mission computer involves establishing a connection with the flight
controller. This connection is crucial for obtaining real-time data from the flight controller,
including GPS coordinates. A separate task is dedicated to managing this connection and
must run concurrently with another task.

Subsequently, the Mission Computer is required to establish a connection with the parent
ground control station. Parameters such as the ID and IP address of the parent ground
control station play a vital role in ensuring the security of communications. Finally, a third
task is receiving and handling messages from ground control stations. Figure 4.3 shows the
flowchart of these main tasks.

Figure 4.3: Mission Computer: Main Tasks

After that, the mission computer must wait and handle commands from the parent ground
control station. In this implementation, the MC can handle only two initial commands. The
first one is the command to receive a mission, and after having a mission loaded, the mission
computer can handle the command to start the mission. In this work, the mission is a file

20 Chapter 4. Authority Handover Procedure

containing the information listed below. However, this work did not implement the task load
mission using a file. It was written directly on code. Future work may consider implementing
the task of reading mission parameters from a file.

The mission file includes:

• a list of waypoints;

• a list of rally points;

• GCS Parameters;

• GCS Geofences;

• Amount of authority handover procedures that the vehicle needs to do during the
mission.

4.3.2 On Mission

When the vehicle receives the start command from the parent ground control station, the
mission computer changes its state from on_load to on_mission. There are three main tasks
that the drone needs to do when it is on_mission state. The first task is to send telemetry
to the ground control station with authority over the drone (also called commander in this
work). The frequency of this task is one message per second.

The second task is to start calculating the distance from each waypoint in the mission. This
routine checks if the drone arrived at the delivery and land points. The third task runs each
50 milliseconds, and it verified in which region the vehicle is flying. These three tasks run
parallel with both tasks that obtain data from the flight controller and listen for incoming
commands from the current GCS (Figure 4.4).

Figure 4.4: Mission Computer: Server Messages

4.4. Ground Control Stations 21

4.3.3 On Handover

When the mission computer detects the vehicle flying over the handover region (as referenced
in Chapter 4.6), it initiates the authority handover procedure. This procedure commences
with the drone transmitting a signal to establish a connection with the ground control station
to which authority will be transferred, referred to as "the partner." Following this, the vehicle
awaits authorization from the current GCS, known as "the commander."

Subsequently, the vehicle sends a CONNECT_HANDOVER message to the partner and
awaits the commander to send the DISCONNECT message. Finally, the vehicle disconnects
from the current ground control station and switches to the new commander. Figure 4.5
illustrates this process.

Figure 4.5: Mission Computer: Handover

4.4 Ground Control Stations

The ground control station sends and receives information to the mission computer, such as
commands and telemetry. It also has an implementation of the Authority Handover module.
The main task starts by reading the GCS parameter and connecting it as a server.

There are two tasks running parallel. The first task is responsible for reading commands
from the terminal. The second task is receiving and handling messages from the drone or
other ground control stations. Figure 4.6 provides a visual representation of these tasks.

22 Chapter 4. Authority Handover Procedure

Figure 4.6: Ground Control Stations main function

Figure 4.7 illustrates the flowchart depicting the task responsible for managing commands
received from the terminal. This task identifies and processes the commands accepted
through the command line. When the variable "command" is set to 0, the loop terminates,
concluding the main function of the GCS program. A value of "1" for the variable triggers
the procedure for mission sharing, involving the transmission of the loaded mission to both

4.4. Ground Control Stations 23

the drone and the partner. For variables equal to 2, 3, or 4, corresponding commands start,
stop, and continue are transmitted to the mission computer.

Figure 4.7: Ground Control Stations Commands

Figure 4.8 provides a visual representation of the message handling. The messages ex-
changed by the mission computers and the ground control stations have a code identify-
ing the message type. If the device does not recognize the message type, it discards it.
Consequently, the mission computer does not waste time processing an invalid message.
Subsequently, all the messages pass through a security layer to ensure authenticity before
executing their respective functions.

When the GCS receives a message of the Telemetry type, it processes the structure depicted
in Listening 4.4. Not all variables in the data structure are utilized, as this depends on the
data provided by the flight controller. The structure was designed to incorporate parameters
considered necessary for the flight controller and relay this information to the ground control
station, thereby monitoring the vehicle’s status.

1 s t r u c t t e l emet r y_ho {
2 doub l e t ime ;
3 f l o a t ba t t e r y_v ;
4 doub l e l a t_deg ;
5 doub l e long_deg ;
6 f l o a t a l t i t ude_m ;
7 f l o a t p i tch_rad_s ;
8 f l o a t r o l l_ r ad_s ;
9 f l o a t yaw_rad_s ;

10 f l o a t vel_north_m_s ;
11 f l o a t vel_east_m_s ;
12 f l o a t vel_down_m_s ;
13 doub l e head ing_deg ;
14 f l o a t GroundSpeed ;
15 i n t wp ;
16 i n t zone ;
17 } ;

24 Chapter 4. Authority Handover Procedure

Figure 4.8: Ground Control Messages

After displaying the data, the subsequent procedure activates the routine "check_route,"
if it is inactive. This routine compares the heading received from the telemetry message
with the expected heading for the mission. It enables the Ground Control Station (GCS) to
monitor whether the drone adheres to the mission path and detect any unexpected trajectory
changes before losing communication.

The "CONNECT" message type configures a new connection with the drone server by
storing the drone’s parameters and initializing communication. Upon completing this process,
the GCS sends a confirmation message to the drone. When the GCS receives a "Mission"

4.5. Messages Sequence 25

message type, it loads the mission parameters received from a partner. Ideally, this should
encompass all previously listed parameters. However, in this study, this procedure solely
shares the information necessary to establish a connection with the vehicle. The mission
parameters are static in the code. Future work could implement features to transmit all
waypoints and mission parameters as previously described.

The remaining message types are related to the handover procedure. During a handover,
ground control stations assume a passive role. They await the initial request from the drone
and subsequently take appropriate action.

4.5 Messages Sequence

The handover procedure is a message sequence that starts when the drone enters the han-
dover region. However, the message exchange between the devices starts when the drone
powers up. After powering up and realizing internal configuration, the mission computer
sends a "CONNECT" message to the ground control station registered as the parent. The
parent, in turn, sends a confirmation to the mission computer, which remains on standby,
waiting for commands from the parent.

To share the mission with both the drone and the partner, the operator of the ground control
station needs to type a command via the command line. Once the mission is shared, the
GCS partner waits for a signal from the drone while the mission computer waits for the
parent ground control station to send the start command.

After the mission starts, the Mission Computer will send telemetry to the ground control
station and start the routine to check the GCS geofences. When the mission detects that
it has arrived in the GCSB coverage area, It will start the handover procedure by calling the
handover function in Listing 4.1.

1 v o i d Drone : : handove r (GCS ∗ from , GCS ∗ to)
2 {
3 un s i g n e d cha r b u f f e r [BUFFER] ;
4

5 s t d : : cout << " [" << now () << " | " << t h i s −>get_id () << "] [On handove r
] : S t a r t Handover from " << from −> i n f o . i d << " to " << to −> i n f o . i d <<
s t d : : e n d l ;

6

7 to −>connec t (CLIENT_MODE) ;
8

9 s t d : : cout << " [" << now () << " | " << t h i s −>get_id () << "] [On handove r
] : Send i ng HO message to " << to −> i n f o . i d << " . " << s t d : : e n d l ;

10

11 t h i s −>send_to (HANDOVER_REQUEST, t h i s −>get_id () , s t r l e n ((cha r ∗) t h i s
−>get_id ()) , to) ;

12

13 s t d : : cout << " [" << now () << " | " << t h i s −>get_id () << "] [On handove r
] : Wa i t i ng f o r r e s p o n s e from " << from −> i n f o . i d << " . " << s t d : : e n d l ;

14

15 t h i s −>wa i t_re spon se (OKHANDOVER, 3 , b u f f e r , f rom) ;
16

17 s t d : : cout << " [" << now () << " | " << t h i s −>get_id () << "] [On handove r
] : OK handove r r e c e i v e d from " << from −> i n f o . i d << " . " << s t d : : e n d l ;

18

19 t h i s −>send_to (CONNECT_HANDOVER, t h i s −>get_id () , s t r l e n ((cha r ∗) t h i s
−>get_id ()) , to) ;

26 Chapter 4. Authority Handover Procedure

20

21 s t d : : cout << " [" << now () << " | " << t h i s −>get_id () << "] [On handove r
] : Wa i t i ng d i s c o n n e c t message from " << from −> i n f o . i d << " . " << s t d : :
e n d l ;

22

23 t h i s −>wa i t_re spon se (DISCONNECT_HANDOVER, 3 , b u f f e r , f rom) ;
24

25 s t d : : cout << " [" << now () << " | " << t h i s −>get_id () << "] [On handove r
] : " << from −> i n f o . i d << " D i s conne c t ed . " << s t d : : e n d l ;

26

27 t h i s −>commander = to ;
28 t h i s −>handover_done = t r u e ;
29 }

Listing 4.1: Handover Procedure in the Mission Computer

First, the drone sends a HANDOVER_REQUEST to the partner. When the partner receives
this request, it will verify the drone’s authenticity and then notify the ground control station
that currently has authority over the drone. The current ground control station will receive
this request identified by the ON_HANDOVER message, and then it will authorize the drone
to go the handover by sending the message OK_HANDOVER.

After receiving the authorization, the drone will send the message CONNECT_HANDOVER
to the partner. It will set up the communication parameters with the drone server and confirm
that the drone is already connected to the ground control station.

Finally, after the ground control station receives the DRONE_CONNECTED message, it
will send the drone a DISCONNECT_HANDOVER that will conclude the handover proce-
dure by changing the ground control station that has authority over the drone and discon-
necting from the ground control station.

The payload of these messages is information necessary to guarantee the authenticity of the
devices. The diagram presented in Figure 4.9 illustrates the sequence of these messages.
The same procedure repeats on the trip back to the launch point. However, the authority
handover is done from GCSB to GCSA.

4.5. Messages Sequence 27

Figure 4.9: Message Sequence diagram

28 Chapter 4. Authority Handover Procedure

4.6 Handover Region

The authority handover process involves a series of message exchanges between an Un-
manned Aerial Vehicle (UAV) and two distinct Ground Control Stations (GCSs). The ini-
tiation of this message sequence depends on the UAV reaching a predefined area referred
to as the handover region. The handover region is where two or more GCS signal ranges
intersect. Consequently, when the mission computer detects that the drone has entered this
region, it triggers the authority handover process.

During the development of this research, three distinct approaches were proposed to delin-
eate this handover region. These methodologies will be explained in the subsequent sections
of this work.

4.6.1 Circular Geofence

The initial approach to defining the handover region involves the intersection of two circles,
with their centers located at coordinates representing a virtual position of the Ground Control
Station and their radius determined by the range, as shown in Figure 4.10.

Figure 4.10: Circular Geofence

4.6. Handover Region 29

During the flight, the Mission Computer (MC) calculates the distance between the drone’s
current position and the coordinates of the circle’s center. If this distance is less than
the radius, the drone is inside the GCSs coverage area. In this implementation, handover
messages are triggered when condition 4.1 is satisfied for both GCSs.

Distance − GCSradius < 0 (4.1)

The distance was computed using the Haversine formula, which calculates the distance be-
tween two coordinates on a sphere. This formula can be adapted for geographic coordinates,
latitude, and longitude on the Earth’s surface. However, the Earth’s surface is not a perfect
sphere, and there are errors associated with the result of this operation (Andreou et al.
2023).

1 doub l e d i s t a n c e C o o r d i n a t e s (doub l e ∗ l a t 1 , doub l e ∗ l on1 , doub l e l a t 2 ,
doub l e l o n2) {

2

3 // Ear th ’ s r a d i u s i n k i l o m e t e r s
4 con s t doub l e r a i o T e r r a = 6371 ;
5

6 // Con v e r s i o n to Rad i an s
7 doub l e r ad_ la t1 = ∗ l a t 1 ∗ M_PI / 180 ;
8 doub l e rad_lon1 = ∗ l o n1 ∗ M_PI / 180 ;
9 doub l e r ad_ la t2 = l a t 2 ∗ M_PI / 180 ;

10 doub l e rad_lon2 = l on2 ∗ M_PI / 180 ;
11

12 // C a l c u l a t e d i f f e r e n c e s between the two c o o r d i n a t e s i n r a d i a n s .
13 doub l e dLat = rad_ la t2 − r ad_ la t1 ;
14 doub l e dLon = rad_lon2 − rad_lon1 ;
15

16 // Ha v e r s i n e Formula
17 doub l e a = pow(s i n (dLat /2) ,2) + cos (r ad_ la t1) ∗ cos (r ad_ la t2) ∗ pow(

s i n (dLon /2) ,2) ;
18 doub l e c = 2 ∗ atan2 (s q r t (a) , s q r t (1−a)) ;
19 doub l e d i s t a n c e = r a i o T e r r a ∗ c ;
20

21 // Con v e r t i n g to Meters
22 d i s t a n c e = d i s t a n c e ∗ pow (10 ,3) ;
23

24 // Retu rn d i s t a n c e
25 r e t u r n d i s t a n c e ;
26 }

Listing 4.2: Haversine Function.

The code above is an implementation of the Haversine function. In this function, the
parameters "lat1" and "lon1" represent the coordinates of the drone, while "lat2" and
"lon2" correspond to the virtual coordinates of the GCS’s center.

While this approach works well for missions that follow a linear trajectory, real-world drone
scenarios often involve more complex flight paths. For example, in the mission presented
in the 4.10, the handover region of the delivery and the return paths are the same. In a
scenario where this does not happen, delimiting a circle that covers both routes can become
complicated, as it is possible to see in Figure 4.11. Consequently, a second strategy was
implemented to define the handover region more effectively.

30 Chapter 4. Authority Handover Procedure

Figure 4.11: Circular Geofence Limitation

4.6.2 Mission Waypoint Detection

The second solution proposed was to associate the handover trigger with a specific waypoint
in the mission. The Mission Computer continuously calculates the distance to the next
waypoint in this implementation. It also employs the Haversine formula to determine the
distance between two coordinates on the Earth’s surface. When the distance becomes less
than a certain radius defined around the waypoint, the MC recognizes that the drone has
reached the waypoint. During the mission creation, it is necessary to specify which waypoint
corresponds to each GCS authority region manually. Figure 5.4 illustrates this process. The
trigger for the handover messages happens when the MC detects that the achieved waypoint
belongs to another GCS.

The mission waypoint detection approach does not depend on delimiting a region around
the control station. It was one solution when the mission path was complex. Nevertheless,
this approach also brings to the project some limitations. For example, if the mission is
not automatic, i.e., the mission is in guided mode, and a pilot needs to control the vehicle,
the pilot must pass through the waypoint in the approximated coordinates to the software
identifies that the vehicle achieved this region. In scenarios where the UAV needs to fly
around obstacles, the MC may not recognize that the vehicle has reached a specific waypoint.
Implementing a code to handle these situations can increase the software’s complexity.

Additionally, manually determining which waypoints correspond to each GCS can be hard for
mission planners. For these reason, a third solution was proposed to define the handover
trigger more effectively.

4.6. Handover Region 31

Figure 4.12: Mission Waypoint Detection

4.6.3 Polygonal Geofence

The third solution was to define a polygon for identifying the range of each ground station.
It involves defining a polygonal boundary by connecting a series of geographic coordinates to
form a closed shape, as shown in Figure 4.13. While determining whether a point belongs to a
region may seem straightforward, implementing this task involves computational complexity.
Several algorithms have been proposed, each offering different trade-offs between speed and
accuracy. The algorithm selection depends on factors such as the geofence’s complexity,
the desired accuracy level, and the available hardware resources (Stevens, Rastgoftar, and
Atkins 2017).

This work implemented the Ray Casting method to determine whether a point lies within
the polygon’s boundaries. This method involves tracing an imaginary line from the point to
be analyzed until it crosses a polygon’s edge and then counting these ray intersections. If
the number of crossings is odd, the point is inside the polygon. Otherwise, if the number of
crossings is even, it is outside.(Fu et al. 2019).

32 Chapter 4. Authority Handover Procedure

Figure 4.13: Polygonal Geofence

1 boo l i s I n s i d e P o l y g o n (Po i n t po i n t , s t d : : v e c t o r <Po int >& po l ygon) {
2 i n t i , j ;
3 i n t n um_ i n t e r s e c t i o n s = 0 ;
4 i n t num_ver t i c e s = po l y gon . s i z e () ;
5 f o r (i = 0 , j = num_vert i ces −1; i < num_ver t i c e s ; j = i ++) {
6 i f (((po l y gon [i] . y> p o i n t . y) != (po l y gon [j] . y> p o i n t . y)) &&
7 (p o i n t . x < (po l y gon [j] . x−po l y gon [i] . x) ∗ (p o i n t . y−po l y gon [i

] . y) / (po l y gon [j] . y−po l y gon [i] . y) + po l y gon [i] . x))
8 num_ i n t e r s e c t i o n s += 1 ;
9 }

10 r e t u r n n um_ i n t e r s e c t i o n s % 2 == 1 ;
11 }

Listing 4.3: Point in Polygn Function.

The function iterates over the polygon edges and checks the ray intersection from the actual
vehicle location. The point variable is the current location of the drone. Each GCS has its
polygon structure. The polygon structure was abstracted as a vector of vertices, where
each vertex is defined by its latitude and longitude. In this implementation, polygon[i] and
polygon[j] represent consecutive vertices of the polygon.

4.7. Safety and Security 33

The condition inside the if statement determines if the ray from the point crosses the edge
in terms of latitude and longitude. By repeating this process for all vertices of the polygon,
it is possible to determine if the current drone location is inside or outside the polygon by
verifying if the number of intersections is odd or even.

During the flight, the Mission Computer calculates if the vehicle is inside of GCSs’ geofence
and the trigger for handover messages occurs when this condition is true for both GCSs.

4.7 Safety and Security

This work implements the Wireless Safety and Security Layer (WSSL) in the communication
between the Ground Control Station and the Mission Computer to ensure safety and security
in the authority handover scenarios.

The WSSL consists of an external layer implemented in a general wireless communication
environment. The WSSL was designed to be used in critical communication. It enables the
detection of communication errors and checks the message’s authenticity using a message
signature that identifies the device (Cunha Rocha et al. 2023).

WSSL can be used to monitor the message delay, and in case of network failure, It returns an
error message that can trigger the emergency procedure. WSSL also increases the system’s
security by detecting and discarding messages from unauthorized devices.

The software modules developed for this research did not include emergency procedures in
case of communications failures. However, some features from the autopilot can be helpful,
for example, pre-determine rally points and the command Return To Launch (RTL).

The rally points provide alternative landing points when the command return to launch is
sent to the flight controller. The RTL is a safety feature that many autopilots use to ensure
that the drone returns safely to a known location in case of unexpected events, such as
communication loss. The RTL command is essential when the drone operates beyond the
visual line of sight.

Once RTL is initiated, the drone will autonomously navigate back to the GPS coordinates
where it took off. It typically ascends to a predefined safe altitude to clear potential obstacles
and then follows a straight path back home.

When WSSL detects unexpected behavior, the mission computer can send the RTL com-
mand to the flight controller. If the mission disposes of a list of rally points, the mission
computer can calculate the distance of the nearest rally point considering the amount of
battery remaining.

Furthermore, the routine check_route can help safety since it identifies when the drone
has a trajectory deviation and can trigger an emergency routine. Another option already
implemented in the software is the check_geofence routine. If the drone is flying outside a
coverage area, it also can activate the emergency procedure.

35

Chapter 5

Software and Hardware Architecture

This chapter describes the implementation of the authority handover in three different scenar-
ios. First, section 5.1 presents the simulation environment and the software implementation.
Section 5.2 describes the integration between the Mission Computer and Flight Controller.
Finally, section 5.3 explains the integration with Adacorsa partners.

5.1 Testbed Architecture

The Authority Handover Module was designed to run in the application layer. Consequently,
it will work independently of the hardware used in the communication between the devices
on the ground and the air. In this work, the communication between the Ground Control
Station was implemented using UDP/IP, and it was assumed that all the devices had a
pre-defined static IP address.

Only in development and simulation scenarios is it possible to replace the wireless commu-
nication with a wired one. During the simulation tests, two computers were used as GCS,
the Jetson Nvidia, and a switch was used to connect all the devices (Figure 5.1).

Figure 5.1: Simulation Setup

In this setup, the two computers are running in the Authority Handover Module of the GCS
side, and each one loads a parameters list with specific information such as ID and IP. On
Jetson Nvidia, the Authority Handover Module of the vehicle side and the software simulator
were running (Figure 5.2).

36 Chapter 5. Software and Hardware Architecture

Figure 5.2: Simulation Softwares

Mavproxy was used to route the simulator connection over UDP to the ground control
stations and Gazebo. QGroundControl and Gazebo connected with the autopilot allowed
the observation of the vehicle movement while the tests ran. The commands below were
used to run all simulators.

1 // A r d u p i l o t +Mavproxy
2 $ cd ~/ a r d u p i l o t / ArduCopte r /$
3 $. . / Too l s / a u t o t e s t / s im_veh i c l e . py −L C i s t e r − f gazebo − i r i s −−out

=127 . 0 . 0 . 1 : 1 4530 −−out =192 .168 .10 .100 :14550 −−out
=192 .168 .10 .128 :14550

4

5 //Gazebo
6 $ gazebo −− v e r b o s e ~/ a r d up i l o t_ga z e bo / wo r l d s / i r i s_a r du cop t e r_ runway .

wo r l d

Listing 5.1: Terminal Commands to start simulation

The Authority Handover Procedure needs to have access to the GPS information of the
vehicle to calculate in which zone it is. This work used the MAVSDK C++ library to access
the vehicle data and telemetry. Listing 5.2 shows a simple implementation using subscription
methods to continuously receive and process flight data from the drone in the application
implemented using C++ programming language.

5.1. Testbed Architecture 37

1 i n t MC: : connect_mc () {
2

3 // Connect w i t h s i m u l a t o r
4 t h i s −>mavsdk . add_any_connect ion ("udp : // : 14530 ") ;
5

6 s t d : : cout << " Wa i t i ng to d i s c o v e r sys tem . . . \n" ;
7 t h i s −>system = get_system (t h i s −>mavsdk) ;
8 i f (! sy s tem) {
9 r e t u r n −1;

10 }
11

12 // S u b s c r i b e to the t e l e m e t r y
13 t h i s −> t e l e m e t r y = new mavsdk : : Te l emet r y { sys tem } ;
14

15 t h i s −>t e l eme t r y −> s u b s c r i b e _b a t t e r y ([&] (mavsdk : : Te l emet r y : : B a t t e r y
b a t t e r y) {

16 t h i s −>v e h i c l e _ t e l e m e t r y . ba t t e r y_v = b a t t e r y . vo l t age_v ;
17 }) ;
18

19 t h i s −>t e l eme t r y −> s u b s c r i b e _ p o s i t i o n ([&] (mavsdk : : Te l emet r y : : P o s i t i o n
p o s i t i o n) {

20 t h i s −>v e h i c l e _ t e l e m e t r y . l a t_deg = p o s i t i o n . l a t i t u d e_de g ;
21 t h i s −>v e h i c l e _ t e l e m e t r y . long_deg = p o s i t i o n . l o ng i t ude_deg ;
22 t h i s −>v e h i c l e _ t e l e m e t r y . a l t i t ude_m= p o s i t i o n . r e l a t i v e_a l t i t u d e_m

;
23 t h i s −>v e h i c l e _ t e l e m e t r y . t ime = t ime (0) ;
24 }) ;
25

26 t h i s −>t e l eme t r y −>s u b s c r i b e_v e l o c i t y_n e d ([&] (mavsdk : : Te l emet r y : :
V e l o c i t yNed v e l o c i t y_n e d) {

27 t h i s −>v e h i c l e _ t e l e m e t r y . vel_north_m_s = v e l o c i t y_n e d . north_m_s ;
28 t h i s −>v e h i c l e _ t e l e m e t r y . vel_east_m_s = v e l o c i t y_n e d . east_m_s ;
29 t h i s −>v e h i c l e _ t e l e m e t r y . vel_down_m_s = v e l o c i t y_n e d . down_m_s ;
30 }) ;
31

32 t h i s −>t e l eme t r y −>su b s c r i b e_a t t i t u d e_angu l a r_v e l o c i t y_bod y ([&] (mavsdk
: : Te l emet r y : : A ngu l a rV e l o c i t yBod y v e l o c i t y_bod y) {

33 t h i s −>v e h i c l e _ t e l e m e t r y . p i tch_rad_s = v e l o c i t y_bod y . p i tch_rad_s ;
34 t h i s −>v e h i c l e _ t e l e m e t r y . r o l l_ r ad_s = v e l o c i t y_bod y . r o l l_ r ad_s ;
35 t h i s −>v e h i c l e _ t e l e m e t r y . yaw_rad_s = v e l o c i t y_bod y . yaw_rad_s ;
36

37 }) ;
38

39 t h i s −>t e l eme t r y −>sub s c r i b e_he a d i n g ([&] (mavsdk : : Te l emet r y : : Head ing
head i n g) {

40 t h i s −>v e h i c l e _ t e l e m e t r y . head ing_deg = head i n g . head ing_deg ;
41 }) ;
42

43 r e t u r n 0 ;
44 }

Listing 5.2: Flight Data Acquisition using MAVSDK

The code shows the subscription to the battery voltage, position, heading, velocity, and
angular velocity data. First, it was necessary to initialize the MAVSDK library and set up
the connection to the drone. For the simulation, a network connection was used (line 4).

After initializing the library, an object representing the drone was created and used to set up

38 Chapter 5. Software and Hardware Architecture

the subscription methods. After subscribing to a particular data type, the callback functions
are triggered whenever new data is available. This data provides real-time information about
the drone’s state. The real-time data enabled the programming and control of the mission
computer behavior to accomplish the Authority handover specification.

This simulation does not implement commands sent from the mission computer to the flight
controller over Mavlink.

Utilizing these open-source simulators, libraries, and tools allowed for establishing a simulated
environment for implementing and testing the Authority Handover Module and communica-
tion systems between the vehicle and diverse Ground Control Stations (GCSs).

The next step involved a gradual transition to real-world implementations, which included
integrating with the flight controller hardware and upgrading communication hardware.

5.2 Flight Controller Integration

The subsequent phase of this project was to implement and test the Authority handover
module in real-world scenarios. A drone GAIA 160MP with a Cube Orange Flight Controller
was utilized To accomplish this objective (Figure (5.3)). The Cube Orange has a serial port
that provides full flight control. It was connected to the Jetson Nvidia to obtain the vehicle
flight data

Figure 5.3: GAIA 160MP with Cube Orange Flight Controller

The Multilink Gateway was used to establish the communication between the devices in the
air and ground. Adacorsa partners provided it, and it is still in development. The Multilink
gateway was designed to provide reliable communication in choosing the most appropriate
link technologies, such as LTE and WiFi. One Gateway and the Concentrator compound it.
The Gateway was on board the vehicle and connected with Jetson Nvidia through Ethernet.
The Concentrator is on the ground, and it is connected with a router and also with the GCS
computers. Figure 5.4 identifies each connection of this hardware setup.

5.2. Flight Controller Integration 39

Figure 5.4: Hardware Setup

It is necessary to define a static IP and add a new entry in the IP route of the devices
involved to make this system work properly. The listing 5.3 below implements a bash script
that was used to set up this configuration.

1 #!/ b i n / bash
2

3 #MC
4 #IP ="192 .168 .11 .100"
5 #NETMASK="255 .255 .255 .0"
6 #ROUTE="192 .168 .10 .0/24"
7 #GATEWAY="192 .168 .11 .1"
8 #IF_NAME_ETH="eth0 "
9

10 #GCS
11 IP=" 192 . 168 . 10 . 100 "
12 NETMASK=" 255 . 255 . 255 . 0 "
13 ROUTE=" 192 . 168 . 11 . 0/24 "
14 GATEWAY=" 192 . 1 68 . 1 0 . 1 "
15 IF_NAME_ETH="eno1"
16

17 echo " S e t t i n g up IP a d d r e s s . . . "
18 sudo i f c o n f i g "$IF_NAME_ETH" "$IP " netmask "$NETMASK"
19

20 echo " Add ing new e n t r y on i p r o u t e "
21 sudo i p r o u t e add "$ROUTE" v i a "$GATEWAY" dev "$IF_NAME_ETH"

Listing 5.3: Multlink Configuration Script

On Jetson Nvidia, this script was implemented as a Linux Systemd Service, so it was possible
it ran automatically as soon as the system powered up. The implementation of the Service is
shown on the listing 5.4. After creating the service file on location "/etc/systemd/system/,"
it was necessary to enable the Service by running the command of the Listing 5.5.

40 Chapter 5. Software and Hardware Architecture

1 [Un i t]
2 D e s c r i p t i o n = M u l t i l i n k Setup
3

4 [I n s t a l l]
5 WantedBy=mu l t i −u s e r . t a r g e t
6

7 [S e r v i c e]
8 Type= s imp l e
9 Exe cS t a r t =/home/ adaco r s a / mu l t l i n k_ s e t u p . sh

10 Re s t a r t=on− f a i l u r e
11 Re s t a r t S e c =10
12 K i l lMode=p r o c e s s

Listing 5.4: Service File on Linux

1 sudo s y s t e m c t l e n a b l e m u l t i l i n k _ s e t u p . s e r v i c e

Listing 5.5: Enable Service

Regarding software, most of the implementation in the integration with the Flight Controller
was the same as described in Section 5.1. As the Multilink guarantees the maintenance of
the same IP on the devices, the only adjustment was in the MAVSDK library. To acquire
flight data, it was necessary to specify the serial connection with the Flight Controller on
the Mission Computer. It was possible specify the serial port and the baud rate as shown
below and replace it on line 4 in Listing 5.2.

1 t h i s −>mavsdk . add_any_connect ion (" s e r i a l : /// dev /ttyACM0 :57600 ") ;

Listing 5.6: Serial Communication Setup between Mission Computer and
Flight Controller

5.3 Integration with Adacorsa Partners

As mentioned before, the Adacorsa project has many partners, each partner developed its
module separately, and until the end of the project, all projects will be integrated.

This approach was practical to increase the modularity and decrease the dependency between
partners during the development. Figure 5.5 show the hardware integration of all box devel-
oped by the partners. In the image 5.5, it is possible to identify the mission computer box
that contains the Jetson Nvidia inside and the switch that connects all boxes via Ethernet.

5.3. Integration with Adacorsa Partners 41

Figure 5.5: Hardware Integration with Adacorsa Partner

According to the Adacorsa specification, the flight controller data would be provided by
another box onboard the vehicle over TCP/IP socket using the message format presented
in the code below.

1 s t r u c t droneData
2 {
3 doub l e Time ; // UTC Time [s e c . nano s ec s]
4 doub l e L a t i t u d e ; // L a t i t u d e [r ad]
5 doub l e Long i t ud e ; // Long i t ud e [r ad]
6 f l o a t Ba roHe igh t ; // ISA−b a r ome t r i c h e i g h t [m]
7 f l o a t Ag lHe i gh t ; // AGL h e i g h t (b a r ome t r i c) [m]
8 f l o a t TrueTrack ; // True t r a c k [r ad]
9 f l o a t TrueHead ing ; // True head i n g [r ad]

10 f l o a t GroundSpeed ; // Ground speed [m/ s]
11 f l o a t E a s t V e l o c i t y ; // West−>ea s t v e l o c i t y [m/ s]
12 f l o a t No r t hV e l o c i t y ; // South −>no r t h v e l o c i t y [m/ s]
13 f l o a t UpVe l o c i t y ; // Down−>up v e l o c i t y [m/ s]
14 } ;

Listing 5.7: Data Struct from TCP Provider

To accomplish this integration, a TCP client was necessary to request the flight data to a
server. The listing 5.8 shows a client implementation requesting the server’s flight controller
information. In the software implementation, it was necessary to call the function at Listing
5.8 instead of the function presented in Listing 5.2.

1 v o i d MC: : run_connect_tcp ()
2 {
3 i n t s t a t u s , v a l r e a d , c l i e n t _ f d ;
4 s t r u c t sockadd r_ in se r v_addr ;
5

6 sock l en_t s o c k l e n = s i z e o f (s t r u c t sockadd r_ in) ;
7

8 cha r b u f f e r [BUF] = { 0 } ;
9

10 i f ((c l i e n t _ f d = so c k e t (AF_INET , SOCK_STREAM, 0)) < 0) {
11 p r i n t f ("\n Socket c r e a t i o n e r r o r \n") ;
12 r e t u r n ;
13 }
14

15 s e r v_addr . s i n_ f am i l y = AF_INET ;

42 Chapter 5. Software and Hardware Architecture

16 s e r v_addr . s i n_po r t = htons (PORT_NRL) ;
17

18 i f (i n e t_pton (AF_INET , IP_NRL , &se rv_addr . s i n_add r)<= 0) {
19 p r i n t f ("\ n I n v a l i d a d d r e s s / Add re s s not s u ppo r t e d \n") ;
20 r e t u r n ;
21 }
22 i f ((s t a t u s = connec t (c l i e n t_ f d , (s t r u c t s o ckadd r ∗)&serv_addr , s i z e o f

(s e r v_addr)))< 0) {
23 p r i n t f ("\ nConnec t i on F a i l e d \n") ;
24 r e t u r n ;
25 }
26

27 s t d : : cout << "TCP Se r v e r i n i t i a l i z e d . " << s t d : : e n d l ;
28

29 w h i l e (! s t a t u s && t h i s −>connect_tcp_on . l o a d ())
30 {
31 v a l r e a d = r ead (c l i e n t_ f d , b u f f e r ,BUF) ;
32 droneData ∗ data = (droneData ∗) (b u f f e r) ;
33

34 p r i n t_drone_data (data) ;
35 t h i s −>v e h i c l e _ t e l e m e t r y . t ime = data −>Time ;
36 t h i s −>v e h i c l e _ t e l e m e t r y . l a t_deg = data −>L a t i t u d e ;
37 t h i s −>v e h i c l e _ t e l e m e t r y . long_deg = data −>Long i t ud e ;
38 t h i s −>v e h i c l e _ t e l e m e t r y . Ba roHe igh t = data −>BaroHe igh t ;
39 t h i s −>v e h i c l e _ t e l e m e t r y . a l t i t ude_m = data −>Ag lHe i gh t ;
40 t h i s −>v e h i c l e _ t e l e m e t r y . TrueTrack = data −>TrueTrack ;
41 t h i s −>v e h i c l e _ t e l e m e t r y . TrueHead ing = data −>TrueHead ing ;
42 t h i s −>v e h i c l e _ t e l e m e t r y . GroundSpeed = data −>GroundSpeed ;
43 t h i s −>v e h i c l e _ t e l e m e t r y . vel_down_m_s = data −>UpVe l o c i t y ;
44 t h i s −>v e h i c l e _ t e l e m e t r y . vel_east_m_s= data −> E a s t V e l o c i t y ;
45 t h i s −>v e h i c l e _ t e l e m e t r y . vel_north_m_s= data −>No r t hV e l o c i t y ;
46 }
47 c l o s e (c l i e n t _ f d) ;
48 }

Listing 5.8: Flight Data Acquisition using TCP/IP

43

Chapter 6

Evaluation and Results

This chapter describes the results of the authority handover in three different scenarios
described in Chapter 5. Section 6.1 presents the results of the simulation environment.
Section 6.2 shows the integration results between the Mission Computer and Flight Con-
troller. Finally, Section 6.3 includes the result of the integration with Adacorsa partners.

6.1 Simulation Results

The mission plan presented in the simulation scenario was based on the Adacorsa demon-
strator 8.4 flight path. Figure 6.1 identifies the GCSA with a red polygon and the vertices
Ax. The yellow rectangle represents the GCSB coverage area. The drone path is in orange.
The takeoff and the land location are the same. The waypoint 8 represents the delivery
point. Also, it is possible to identify the drone across the handover region four times.

Figure 6.1: Mission Plan

Figure 6.2 shows the procedure of starting a mission. Both Ground control Stations are
already running when the drone simulations are powered up. The first drone action was

44 Chapter 6. Evaluation and Results

connecting to the flight controller and activating its server. Then, it connected to the
parent, in this case, the GCSA.

After that, the drone waited to receive a mission from the parent. Both ground control
stations also started connecting their server. After, they will wait for a connection from the
drone or receive the mission from another GCS.

The drone was inside the GCSA area, meaning it only accepted the GCSA commands. The
green arrows show both GCS trying to send the command start to the drone. However,
only the GCSA command is accepted. After that, the mission computer started to send
telemetry to the GCSA.

Figure 6.2: Start Mission Command

6.1.1 Authority Handover

When the vehicle entered the GCSA and GCSB geofence intersection, the mission computer
recognized the handover region and initiated the authority handover procedure.

Figure 6.3 illustrates the authority handover messages exchanged between the devices in-
volved. The drone initiated by transmitting a signal to GCSB (Step 1) and awaited a
response from GCSA. GCSB received the drone’s signal and relayed it to GCSA (Step 2).
Upon receiving the request from GCSB, GCSA responded to the drone (Step 3).

Following the confirmation from GCSA for the handover, the drone transmitted a "connect
handover" message to GCSB (Step 4). GCSB accepted the connection and notified the
partner (Step 5), while GCSA sent a "disconnect" message to the drone (Step 6). After the

6.1. Simulation Results 45

handover, the drone disconnected from GCSA (Step 7) and commenced sending telemetry
data to GCSB.

Figure 6.3: Authority Handover Messages

Figure 6.4 shows the vehicle in the QGroundControl crossing the handover region. The
green arrows show the sequence of handover messages at that moment. In sequence, it is
possible to visualize that GCSA stopped to receive telemetry from the vehicle, and GCSB
started to receive the telemetry messages. In the handover from GCSB to GCSA, the same
sequence happens, but instead, the drone starts sending the signal to GCSA (Figure 6.5).

46 Chapter 6. Evaluation and Results

Figure 6.4: Authority Handover Procedure

6.1. Simulation Results 47

Figure 6.5: Authority Handover Procedure

6.1.2 Authority Check

As the drone flies through the coverage area of GCSB, it is required to transmit telemetry
data to GCSB and acknowledge their commands. This scenario is depicted in Figure 6.7,
where the drone is situated within the coverage area of GCSB. When it received the GCSB
command, it accepted it. However, when the command was sent from GCSA, the mission
computer rejected the command.

In Figure 6.6, the green arrows similarly illustrate that the GCSs sent the commands to
the vehicle while within GCSA’s coverage area. Notably, the mission computer rejected the
command from GCSB but accepted the command from GCSA, aligning with the expected
behavior.

48 Chapter 6. Evaluation and Results

Figure 6.6: Authority Check GCSA

6.1. Simulation Results 49

Figure 6.7: Authority Check GCSB

6.1.3 Emergency Procedure

In this study, the emergency procedure was exclusively activated when the drone operated in
an area without GCS coverage. Figure 6.8, illustrates the drone flying out from the coverage
area of GCSA.

The green arrow marks the point at which the mission computer detected that the vehicle
had exited the geofence flight zone and signaled the execution of the emergency procedure.
It is important to note that this study did not implement the MAVLINK commands sent
from the Mission Computer to the autopilot.

50 Chapter 6. Evaluation and Results

Figure 6.8: Emergency Procedure

6.2 Flight Controller Integration Results

The hardware integration results were obtained in August 2023. The drone was not allowed
to fly in this area for security reasons. Since the handover only needs the GPS variation to
work, the handover procedure was done by moving the drone GAIA MP160 and its flight
controller through the ground, and real coordinates from GPS were obtained. The mission
plan used is shown in Figure 6.9.

6.2. Flight Controller Integration Results 51

Figure 6.9: GCSA and Mission Computer: Delivery flight Handover

The red polygon and the vertices Ax represent the GCSA. The yellow polygon represents
the GCSB coverage area with the vertices identified by Bx. The drone path is in orange.
The takeoff and the land location are the same. The way-point number 11 represents the
delivery point.

The handover region is the interception of both polygons of GCSA and GCSB. The vehicle
crossed the handover region only two times, one on the delivery flight and the other on
the trip back. Figure6.10 shows the handover procedure occurring in the simulation of the
delivery flight, and Figure 6.11 shows the authority handover procedure occurring on the trip
back.

52 Chapter 6. Evaluation and Results

Figure 6.10: Delivery flight Handover

6.2. Flight Controller Integration Results 53

Figure 6.11: Return Flight Handover

54 Chapter 6. Evaluation and Results

6.3 Integration Results with Adacorsa Partners

The integration results with Adacorsa partners were obtained on 22 September 2023. The
main objective was to integrate hardware and software between the partners.

Figure 6.12 shows another GAIA MP with a different hardware configuration. The vehicle
payload is composed of six boxes. During this integration, the drone flew a similar path
as shown in Figure 6.1, with the difference that after way point 12, the drone returned to
launch due to the low battery.

The integration with the TCP server could be tested. Figure 6.13 shows both ground con-
trol stations receiving real-time data from the Mission Computer connected with the Flight
Controller using the TCP server. Figure 6.14 shows the log file obtained from Mission Com-
puter. The authority handover was done in both cases. The logs also show the command
Stop being accepted or rejected regarding the drone’s position.

Figure 6.12: Integration Adacorsa Partner Results: Drone

6.3. Integration Results with Adacorsa Partners 55

Figure 6.13: Integration Adacorsa Partner Results

56 Chapter 6. Evaluation and Results

Figure 6.14: Integration Adacorsa Partner: Log Mission Compute

57

Chapter 7

Conclusion and Future Work

In conclusion, this thesis represents a significant step forward in Unmanned Aerial Vehicle
technology and Beyond Visual Line of Sight (BVLOS) operations. The primary focus of
this research was to develop techniques and procedures for a drone to perform an author-
ity handover between multiple ground control stations, a valuable aspect of the BVLOS
operations.

Throughout this study, several objectives were achieved. First, an overview of Unmanned
Aerial Vehicle architectures was provided, setting the foundation for the subsequent work.
The challenges associated with BVLOS operations were discussed, highlighting the impor-
tance of addressing these challenges to advance drone technology.

The research also involved surveying handover techniques applicable to BVLOS operations
and examining simulation technologies relevant to Unmanned Aircraft Systems (UAS). After-
ward, an authority handover procedure was implemented and integrated with partner projects
of the Adacorsa project. The validation process included simulations and integration with
real hardware, ensuring the developed procedure met the specified requirements.

The successful demonstration of the authority handover procedure in three scenarios vali-
dates the software component. Although challenges were encountered during the hardware
integration phase, the software consistently behaved as expected and fulfilled its intended
purpose.

Future works can explore scenarios involving communication losses with the ground control
stations, forcing the vehicle to execute emergency procedures. Testing the safety and secu-
rity layers in missions where unauthorized ground control stations attempt to connect with
the vehicle would be a valuable exploration scenario.

This thesis advances the understanding of drone authority handover procedures and lays
the groundwork for future research and development. The knowledge and insights gained
from this work can serve as a solid foundation for addressing the evolving challenges and
opportunities in drone technology and BVLOS operations.

59

Bibliography

Adacorsa (2023). Project vision. https://adacorsa.eu/. Accessed: 2023-01-18.
Allouch, Azza et al. (2019). “MAVSec: Securing the MAVLink protocol for ardupilot/PX4

unmanned aerial systems”. In: 2019 15th International Wireless Communications & Mobile
Computing Conference (IWCMC). IEEE, pp. 621–628.

ANAC (2022). Categoria Específica (SPEC). https://www.anac.pt/vPT/Generico/
drones/categoria_especifica/Paginas/CategoriaEspecifica.aspx. Accessed:
2023-01-18.

Andersen, Frederik Mazur et al. (2021). “Towards SORA-compliant BVLOS communica-
tion”. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE,
pp. 1509–1519.

Andreou, Andreas et al. (2023). “UAV Trajectory Optimisation in Smart Cities using Modified
A* Algorithm Combined with Haversine and Vincenty Formulas”. In: IEEE Transactions
on Vehicular Technology.

Angjo, Joana et al. (2021). “Handover management of drones in future mobile networks:
6G technologies”. In: IEEE access 9, pp. 12803–12823.

Ardupilot (2023a). Ardupilot Documentation. https://ardupilot.org. Accessed: 2023-
05-23.

– (2023b). Mavproxy Documentation. https://ardupilot.org/mavproxy/. Accessed:
2023-05-23.

– (2023c). The Cube Orange/+ With ADSB-In Overview. https://ardupilot.org/
copter/docs/common-thecubeorange-overview.html. Accessed: 2023-05-23.

Auterion (2023). The story of PX4 and Pixhawk. https://auterion.com/company/the-
history-of-pixhawk/. Accessed: 2023-01-04.

Ayamga, Matthew, Selorm Akaba, and Albert Apotele Nyaaba (2021). “Multifaceted ap-
plicability of drones: A review”. In: Technological Forecasting and Social Change 167,
p. 120677. issn: 0040-1625. doi: https://doi.org/10.1016/j.techfore.2021.
120677. url: https://www.sciencedirect.com/science/article/pii/S0040162521001098.

Benarbia, Taha and Kyandoghere Kyamakya (2022). “A literature review of drone-based
package delivery logistics systems and their implementation feasibility”. In: Sustainability
14.1, p. 360.

Bigazzi, Luca et al. (2022). “Fast Obstacle Detection System for UAS Based on Comple-
mentary Use of Radar and Stereoscopic Camera”. In: Drones 6.11, p. 361.

Cister (2023). ADACORSA - Airborne data collection on resilient system architectures.
http://www.cister.isep.ipp.pt/projects/adacorsa/. Accessed: 2023-01-18.

Cunha Rocha, Marcia et al. (2023). “A WSSL Implementation for Critical Cyber-Physical
Systems Applications”. In: Proceedings of Cyber-Physical Systems and Internet of Things
Week 2023. CPS-IoT Week ’23. San Antonio, TX, USA: Association for Computing
Machinery, pp. 192–197. doi: 10.1145/3576914.3587507. url: https://doi.org/10.
1145/3576914.3587507.

Dronecode (2023a). MAVLink. https://mavlink.io/en/. Accessed: 2023-02-04.

60 Bibliography

Dronecode (2023b). MAVSDK Guide. https://mavsdk.mavlink.io/main/en/index.
html. Accessed: 2023-02-04.

– (2023c). Open Source Autopilot. https://px4.io/. Accessed: 2023-02-04.
– (2023d). QGROUNDCONTROL. http://qgroundcontrol.com/. Accessed: 2023-01-

18.
Dronecode Foundation (2023). The Dronecode Foundation. https://www.dronecode.
org/. Accessed: 2023-01-04.

EASA (2022). “Easy Access Rules for Airworthiness and Environmental Certification (Reg-
ulation (EU) No 748/2012).” European Union Aviation Safety Agency. European Union.

Elmeseiry, Nourhan, Nancy Alshaer, and Tawfik Ismail (2021). “A Detailed Survey and Future
Directions of Unmanned Aerial Vehicles (UAVs) with Potential Applications”. In: Aerospace
8.12. issn: 2226-4310. doi: 10.3390/aerospace8120363. url: https://www.mdpi.com/
2226-4310/8/12/363.

Fu, Qixi et al. (2019). “A geofence algorithm for autonomous flight unmanned aircraft
system”. In: 2019 International Conference on Communications, Information System and
Computer Engineering (CISCE). IEEE, pp. 65–69.

Hartley, Robin John ap Lewis, Isaac Levi Henderson, and Chris Lewis Jackson (2022). “BV-
LOS Unmanned Aircraft Operations in Forest Environments”. In: Drones 6.7, p. 167.

Kwon, Young-Min et al. (2018). “Empirical Analysis of MAVLink Protocol Vulnerability for
Attacking Unmanned Aerial Vehicles”. In: IEEE Access 6, pp. 43203–43212. doi: 10.
1109/ACCESS.2018.2863237.

Lorenz Meier (2023). Pixhawk. https://pixhawk.org/. Accessed: 2023-01-04.
Matalonga, Santiago et al. (2022). “A review of the legal, regulatory and practical aspects

needed to unlock autonomous beyond visual line of sight unmanned aircraft systems op-
erations”. In: Journal of Intelligent & Robotic Systems 106.1, pp. 1–13.

Neji, Najett, Tumader Mostfa, and Yasmina Bestaoui Sebbane (Apr. 2019). “Technol-
ogy Assessment for Radio Communication between UAV and Ground: Qualitative Study
and Applications”. en. In: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-
Spring). Kuala Lumpur, Malaysia: IEEE, pp. 1–6. isbn: 978-1-72811-217-6. doi: 10.1109/
VTCSpring.2019.8746306. url: https://ieeexplore.ieee.org/document/8746306/.

Noor, Fazal et al. (2020). “A review on communications perspective of flying ad-hoc net-
works: key enabling wireless technologies, applications, challenges and open research top-
ics”. In: Drones 4.4, p. 65.

Nvidia (2023). Nvidia Jetson. https://www.nvidia.com/. Accessed: 2023-05-23.
Open Robotics (2023). Gazebo. https://gazebosim.org/home. Accessed: 2023-01-04.
Politi, Elena et al. (2021). “A Survey of UAS Technologies to Enable Beyond Visual Line

Of Sight (BVLOS) Operations.” In: VEHITS, pp. 505–512.
PX4 (2023a). Gazebo Simulation. https://docs.px4.io/main/en/simulation/gazebo.
html. Accessed: 2023-01-04.

– (2023b). PX4 Documentation. https://docs.px4.io/main/en/flight_controller/
cubepilot_cube_orange.html. Accessed: 2023-05-23.

Rejeb, Abderahman et al. (2022). “Drones in agriculture: A review and bibliometric analysis”.
In: Computers and Electronics in Agriculture 198, p. 107017.

Shayea, Ibraheem et al. (2022). “Handover Management for Drones in Future Mobile Net-
works—A Survey”. In: Sensors 22.17, p. 6424.

Stevens, Mia N, Hossein Rastgoftar, and Ella M Atkins (2017). “Specification and evaluation
of geofence boundary violation detection algorithms”. In: 2017 International Conference
on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 1588–1596.

Bibliography 61

Suzel Tunes (2021). Fora do campo de visão. https://revistapesquisa.fapesp.br/
fora-do-campo-de-visao/. Accessed: 2023-01-18.

