
Orquestração de Serviços em Redes 5G

TIAGO FONSECA AMARAL
novembro de 2020

Instituto Superior de Engenharia do Porto

Services Orchestration
in 5G Networks

Tiago Fonseca Amaral

Mestrado em Engenharia Eletrotécnica e de Computadores

Área de Especialização em Telecomunicações

Departamento de Engenharia Eletrotécnica

2020

© Tiago Amaral, 2020

Relatório elaborado para satisfação parcial dos requisitos da Unidade Curricular de
Tese/Dissertação do Mestrado em Engenharia Eletrotécnica e de Computadores.

Candidato: Tiago Fonseca Amaral, n.º 1180440, 1180440@isep.ipp.pt

Orientação científica: Professor Doutor Jorge Mamede, jbm@isep.ipp.pt

Empresa: Altran Portugal, SA

Coorientador: Doutor Sérgio Figueiredo, sergio.figueiredo@altran.com

Coorientador: Mestre Bruno Parreira, bruno.parreira@altran.com

Mestrado em Engenharia Eletrotécnica e de Computadores

Área de Especialização em Telecomunicações

Departamento de Engenharia Eletrotécnica

Instituto Superior de Engenharia do Porto

25 de outubro 2020

À minha família.

v

Agradecimentos

Sem dúvida nenhuma, esta etapa foi a mais desafiante da minha vida académica. O desafio
foi proposto e os objetivos foram atingidos com sucesso. Este sucesso deve-se ao trabalho
desenvolvido ao longo dos últimos anos, à rotina criada e sobretudo à organização. As
pessoas que conheci, ajudaram-me a crescer como pessoa, assim sendo pretendo exprimir a
minha gratidão a todos, desde o segurança da escola, aos funcionários do bar, do refeitório,
da papelaria, da reprografia e da biblioteca, a todos os professores, aos meus colegas de
curso, ao Departamento de Engenharia Eletrotécnica (DEE), à associação de estudantes do
Instituto Superior de Engenharia do Porto (ISEP), à ISEP Academy, ao ISEP e à empresa
Altran Portugal por me permitir integrar num projeto tão desafiante com uma equipa de
trabalho altamente qualificada.

Um enorme obrigado à minha família e aos meus amigos pela motivação e apoio que
me deram para continuar a lutar pelos meus objetivos académicos e pessoais.

Agradeço aos meus colegas de curso, de uma forma especial, pelos momentos de estudo
e trabalho em conjunto, bem como a amizade criada e respeito mútuo. E ainda a todos os
outros colegas que conheci na minha passagem pelo ISEP.

Ao Professor Doutor Jorge Mamede, agradeço pelo seu apoio, disponibilidade, ori-
entação científica no desenvolvimento desta dissertação, e também pelos ensinamentos
prestados ao longo do curso.

Ao Doutor Sérgio Figueiredo e ao Mestre Bruno Parreira, coorientadores e membros
do projeto Mobilizador 5G na Altran Portugal, agradeço pela integração, apoio e orien-
tação prestada no projeto desenvolvido. Também agradecer à minha equipa de trabalho,
nomeadamente, aos meus colegas de equipa, ao Ricardo, ao Paulo, ao João, ao Bruno e ao
Diogo, pelo espírito de equipa criado e pela passagem de inúmeros conhecimentos que fui
adquirindo nesta área.

Por fim, gostaria de agradecer a todas as pessoas que direta ou indiretamente con-
tribuíram para que a realização deste projeto fosse possível, manifesto gratidão a todas
essas pessoas.

vii

Abstract

The fifth-generation of mobile communications (5G) introduces significant changes in the
deployment of networking infrastructure, based on fundamental pillars like Network Slic-
ing, Multi-Access Edge Computing (MEC), Network Functions Virtualization (NFV) and
Software-Defined Networking (SDN). This radical transformation in its architecture brings
several challenges and puts under pressure the telecommunications operators to keep com-
petitive Quality of Service (QoS) levels and enhance the way network services are designed,
deployed and managed.

The ability to orchestrate and manage the network assumes a crucial role in maximizing
the advantages related to the use of these technologies and architectures. In this sense, op-
erators need to use open-source developments, avoiding technology and vendor lock-in, re-
ducing operating costs and time-to-market for new products. Several open-source network
orchestration solutions have appeared with the aim of proposing a complete orchestration
framework. In this context, the Open Network Automation Platform (ONAP) emerged as a
very valuable open-source platform, both as a standards-aligned and standards-influencing
solution capable of enabling end-to-end management and orchestration of services and
resources through a multi-domain infrastructure.

This Dissertation aims to integrate services developed for 5G networks, by enabling
essential lifecycle management operations (e.g., instantiation, termination, etc.) using a
reference open-source orchestration platform.

In order to validate the considered orchestration platform, a virtual Content Delivery
Network (vCDN) service was integrated. To depict the platform closed-loop control capa-
bilities, a scenario of congestion was proposed and handled through the scale-out operation
of the vCDN service. The quality of the designed workflow was improved in two specific
operations of the vCDN service lifecycle management.

Keywords: 5G, Network Slicing, NFV, ONAP, Orchestration.

ix

Resumo

A quinta geração de comunicações móveis (5G) introduz mudanças significativas na imple-
mentação da infraestrutura de rede, sendo baseada em pilares fundamentais como Network
Slicing, Multi-Access Edge Computing (MEC), Network Functions Virtualization (NFV) e
Software-Defined Networking (SDN). Esta transformação radical na sua arquitetura traz
diversos desafios e coloca as operadoras de telecomunicações sob pressão para manter níveis
competitivos de qualidade de serviço e aprimorar o modo como os seus serviços de rede
são projetados, implementados e geridos.

A capacidade de orquestrar e gerir a rede assume um papel crucial para maximizar as
vantagens relacionadas com a utilização destas tecnologias e arquiteturas. Neste sentido, as
operadoras precisam de utilizar projetos open-source, evitando assim hardware e software
proprietário, reduzindo os custos operacionais e também o tempo de colocação no mercado
de novos produtos. Várias soluções de orquestração de rede open-source surgiram com o
objetivo de propor uma plataforma de orquestração completa. Neste contexto, o Open
Network Automation Platform (ONAP) emergiu como uma plataforma open-source muito
valiosa, tanto como uma solução orientada a padrões e que influencia os padrões, capaz
de permitir a gestão e orquestração end-to-end dos serviços e recursos através de uma
infraestrutura multi-domínio.

Esta Dissertação tem como objetivo a integração de serviços desenvolvidos para as
redes 5G, de forma a permitir as operações essenciais da gestão do seu ciclo de vida (p.
ex., instanciação, terminação, etc.), utilizando uma plataforma de orquestração open-source
de referência.

Para a validação da plataforma orquestração proposta foi realizada a integração de
um serviço virtual Content Delivery Network (vCDN). A descrição das funcionalidades da
metodologia de closed-loop control da plataforma de orquestração, teve por base a definição
de um cenário de congestionamento, que foi resolvido através da operação de scale-out do
serviço vCDN. A qualidade do workflow desenvolvido foi aprimorada em duas operações
específicas de gestão do ciclo de vida do serviço vCDN.

Palavras-Chave: 5G, Network Slicing, NFV, ONAP, Orquestração.

xi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Contributions . 3
1.5 Document Structure . 3

2 State of the Art 5
2.1 Fifth-Generation of Mobile Communications 5

2.1.1 Standardization . 6
2.1.2 Use Cases and Requirements . 7
2.1.3 Architecture . 9
2.1.4 Key Enablers . 12

2.2 Network Orchestration Overview . 18
2.2.1 End-to-End Orchestration . 18
2.2.2 NFV Management and Orchestration 19
2.2.3 Advances in Orchestration Mechanisms 19

2.3 Network Service Orchestration . 20
2.3.1 Open Network Automation Platform 21
2.3.2 Open Source Management and Orchestration 22
2.3.3 Open-Source Solutions . 23

2.4 Modeling Languages . 24
2.4.1 Heat Orchestration Template . 24
2.4.2 Topology and Orchestration Specification for Cloud Applications . . 24
2.4.3 Business Process Model and Notation 26

2.5 BPM Frameworks . 26
2.5.1 Camunda BPM . 26
2.5.2 Oracle BPM Suite . 28

2.6 Content Delivery Network . 28
2.7 Summary . 29

3 Orchestration Solution 31
3.1 Orchestration Platform . 31

3.1.1 Architecture . 31
3.1.2 Selected Components . 32
3.1.3 Communication . 36
3.1.4 Interfaces . 36

3.2 5G Service: vCDN . 39

xiii

xiv CONTENTS

3.2.1 Closed-loop Orchestration Scenario 39
3.2.2 vCDN Service . 40
3.2.3 Scale-Out Operation . 41

3.3 Summary . 43

4 Implementation 45
4.1 Infrastructure Deployment . 45

4.1.1 ONAP Operations Manager . 45
4.1.2 Required Tools . 46
4.1.3 Testbed Configuration . 47

4.2 Service Modeling . 47
4.2.1 Design-time Activities . 47
4.2.2 vCDN Service Design . 49
4.2.3 vCDN Node Service Orchestration 50

4.3 Service Instantiation via ONAP NBI . 51
4.4 Workflow Elements . 53

4.4.1 Events . 53
4.4.2 Activities . 54
4.4.3 Gateway . 55
4.4.4 Error Handling . 55

4.5 Summary . 57

5 Workflow Deployment 59
5.1 Process Methodology . 59

5.1.1 Enrichment Stage . 59
5.1.2 Execution Stage . 62
5.1.3 Conclusion Stage . 65

5.2 Summary . 67

6 Obtained Results 69
6.1 Study Method and Testbed . 69

6.1.1 Study Method . 70
6.1.2 Testbed Environment . 72

6.2 Determination of Reference Values . 72
6.3 Obtained Results for Time Delay Definition 73

6.3.1 Testing Method . 73
6.3.2 Success Scenario . 74
6.3.3 Error Scenario . 75

6.4 Results Analysis . 76
6.4.1 Observations . 77
6.4.2 Time Delay Selection . 77

7 Final Remarks 79
7.1 Conclusions . 79
7.2 Future Work . 80

CONTENTS xv

A ONAP ETSI NFV API 81
A.1 Network Service Descriptor Management Interface 81

A.1.1 Get Network Service Descriptor Resources 81
A.2 VNF Package Management Interface . 82

A.2.1 Get Individual VNF Package Information 82
A.3 Network Service Lifecycle Management Interface 82

A.3.1 Create Network Service . 83
A.3.2 Instantiate Network Service . 83
A.3.3 Monitoring Instantiation/Termination Progress 84
A.3.4 Get Network Service . 84
A.3.5 Terminate Network Service . 85

B Service Response Time 87
B.1 Bash Script . 87

References 93

List of Figures

2.1 Regional standards developing organizations. 6
2.2 Phases and expected timelines for IMT-2020 by ITU-R. 7
2.3 Categories of different use cases defined by 3GPP. 8
2.4 Enhancement of key capabilities from IMT-Advanced to IMT-2020. 9
2.5 5G system architecture by 3GPP in TS 23.501 11
2.6 5G network slicing concept with different scenarios. 12
2.7 ETSI NFV reference architecture. 14
2.8 SDN reference architecture. 16
2.9 End-to-end orchestration. 18
2.10 Closed-loop orchestration in network management. 20
2.11 ONAP architecture overview. 22
2.12 Structural elements of a TOSCA service template and their relations. 25
2.13 Camunda architecture overview. 27

3.1 Architecture of customized orchestration platform. 32
3.2 ONAP service orchestrator functional architecture. 35
3.3 ONAP northbound interface architecture. 37
3.4 ONAP El Alto and ETSI NFV-MANO alignment. 38
3.5 Closed-loop orchestration scenario high-level overview. 39
3.6 Functional architecture of vCDN service. 40

4.1 Managing ONAP with kubernetes. 46
4.2 Design process in ONAP. 49
4.3 Composition of vCDN node service in SDC. 50
4.4 Events types. 54
4.5 Activities types. 55
4.6 Exclusive gateway. 55
4.7 Error event. 56
4.8 Retry mechanism. 56

5.1 Handle of the NBI request for vCDN scaling. 60
5.2 Cloud region validation. 61
5.3 Collect necessary information about vCDN service. 61
5.4 Collect information about required resources. 62
5.5 Prepare information to call subflow to scale-out vCDN service. 63
5.6 Creation and instantiation requests to scale-out vCDN service. 63
5.7 Monitoring of instantiation progress. 64
5.8 Network service validation status. 64
5.9 Termination request. 65

xvii

xviii LIST OF FIGURES

5.10 Monitoring of termination progress. 65
5.11 Conclusion process. 66
5.12 Abort workflow. 66
5.13 Unexpected error. 66

6.1 Creation and instantiation operations in a successful scenario. 70
6.2 Creation, instantiation and termination operations in an error scenario. . . . 71
6.3 Obtained results of monitoring of instantiation progress in a scenario of

success. 74
6.4 Obtained results of monitoring of instantiation progress in an error scenario. 75
6.5 Obtained results of monitoring of termination progress in an error scenario. 76

List of Tables

2.1 Summary of open-source NSO implementations. 23

4.1 Testbed configuration for the deployment of ONAP. 47

6.1 Testbed configuration of vCDN edge node. 72
6.2 Obtained reference values for both scenarios. 73
6.3 Obtained results of monitoring of instantiation progress in a scenario of

success. 74
6.4 Obtained results of monitoring of instantiation progress in an error scenario. 75
6.5 Obtained results of monitoring of termination progress in an error scenario. 76

A.1 API request definition of get information about NSD resources. 81
A.2 API response payload of get NSD resources. 82
A.3 API request definition of get information about an individual VNF package. 82
A.4 API response payload of get information about an individual VNF package. 82
A.5 API request definition of create NS. 83
A.6 API request payload of create NS. 83
A.7 API response payload of create NS. 83
A.8 API request definition of instantiate NS. 83
A.9 API request payload of instantiate NS. 84
A.10 API response payload of instantiate NS. 84
A.11 API request definition of get operation progress. 84
A.12 API response payload of get NS. 84
A.13 API request definition of get NS. 84
A.14 API response payload of get NS. 85
A.15 API request definition of terminate NS. 85
A.16 API request payload of terminate NS. 85
A.17 API response payload of terminate NS. 85

xix

List of Acronyms

3GPP Third Generation Partnership Project

4G Fourth-Generation of mobile telecommunications technology

5G Fifth-Generation of mobile telecommunications technology

5G-PPP 5G - Public Private Partnership

5GS 5G System

AAI Active and Available Inventory

AMF Access and Mobility Management Function

API Application Programming Interface

APP-C Application Controller

AR/VR Augmented & Virtual Reality services

ARIB Association of Radio Industries and Businesses

ATIS Alliance for Telecommunications Industry Solutions

AWS Amazon Web Services

BPD Business Process Diagram

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Model and Notation

BSS Business Support Systems

CC Critical Communications

CCSA China Communications Standards Association

CDN Content Delivery Network

CLAMP Closed Loop Automation Management Platform

CMMN Case Management Model and Notation

CP Control Plane

CPU Central Processing Unit

CSAR Cloud Service ARchive

CSP Communication Service Providers

xxi

xxii LIST OF ACRONYMS

D-CPI Data-Controller Plane Interface

DCAE Data Collection, Analytics and Events

DMaaP Data Movement-as-a-Platform

DP Data Plane

EM Element Manager

ETSI European Telecommunications Standards Institute

FCAPS Fault-management, Configuration, Accounting, Performance, Security

GB Gigabyte

GUI Graphical User Interface

GVNFM Generic Virtualized Network Function Manager

HD Hard Disk

HOT Heat Orchestration Template

HTTP Hypertext Transfer Protocol

ID Identifier

IDE Integrated Development Environment

IMT International Mobile Telecommunications

IP Internet Protocol

IPR Intellectual Property Rights

ISEP Instituto Superior de Engenharia do Porto

ISG Industry Specification Group

ISO International Organization for Standardization

IT Information Technology

ITU International Telecommunication Union

ITU-R ITU - Radiocommunications Sector

ITU-T ITU - Telecommunication Standardization Sector

IaaS Infrastructure-as-a-Service

IoT Internet of Things

JSON JavaScript Object Notation

JVM Java Virtual Machine

KPI Key Performance Indicator

LTE Long-Term Evolution

MANO Management and Orchestration

MEC Multi-access Edge Computing

MEF Metro Ethernet Forum

MSB Microservices Bus

LIST OF ACRONYMS xxiii

NBI NorthBound Interface

NF Network Function

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NG-RAN Next Generation - Radio Access Network

NGMN Next Generation Mobile Networks Alliance

NS Network Service

NSD Network Service Descriptor

NSO Network Service Orchestration

NaaS Network-as-a-Service

OMG Object Management Group

ONAP Open Network Automation Platform

ONF Open Networking Foundation

OODA Observe, Orient, Decide, Act

OOM ONAP Operations Manager

OS Operating System

OSI Open System Interconnection

OSM Open Source Management and Orchestration

OSS Operations Support System

PBNM Policy-Based Network Management

PLMN Public Land Mobile Network

PNF Physical Network Functions

QoS Quality of Service

RAM Random Access Memory

REST Representational State Transfer

RESTful Representational State Transfer conforming Web services

SDC Service Design and Creation

SDN Software-Defined Network

SDN-C Software-Defined Network - Controller

SDO Standards Developing Organization

SLA Service Level Agreement

SMF Session Management Function

SO Service Orchestrator

TCP Transmission Control Protocol

xxiv LIST OF ACRONYMS

TLS Transport Layer Security

TMF TeleManagement Forum

TOSCA Topology and Orchestration Specification for Cloud Applications

TSDSI Telecommunications Standards Development Society, India

TTA Telecommunications Technology Association

TTC Telecommunications Technology Committee

UML Unified Modeling Language

UP User Plane

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Uniquef Identifier

VF Virtual Function

VF-C Virtual Function Controller

VFC Virtual Function Component

VID Virtual Instantiation Deployment

VIM Virtualized Infrastructure Manager

VM Virtual Machine

VNF Virtualized Network Function

VNFD Virtualized Network Function Descriptor

VNFM Virtual Network Function Manager

VSP Vendor Software Products

WS-BPEL Web Services - Business Process Execution Language

XML Extensible Markup Language

YAML Yet Another Markup Language

YANG Yet Another Next-Generation

eMBB enhanced Mobile Broadband

eV2X enhanced Vehicle-to-Everything

mMIoT massive Internet of Things

mMTC massive Machine-Type Communications

uRLLC ultra-Reliable and Low Latency Communications

vCDN virtual Content Delivery Network

vCPU virtual Central Processing Unit

Chapter 1

Introduction

1.1 Context

Mobile wireless communications have become an essential part of our society with increas-
ing importance over the last years. Some services deeply rooted in our daily life, such as
education, banking, shopping, and public services, are already available online, providing
new levels of comfort and efficiency accessible to the whole society [1].

The fifth-generation of mobile communications (5G) has been triggered by the increas-
ingly strong demand for a well-connected society, which is leveraging new services and
business models in different markets. This generation is the first mobile communications’
system that is by design addressing a wide range of needs of vertical industries, such as
manufacturing, energy, healthcare, automotive, and multimedia, through an unlimited mo-
bile broadband experience, provides massive connectivity for everything from human-held
smart devices to sensors and machines, and most importantly, it has the ability to support
critical machine communications with instant action and ultra-high reliability [2].

The 5G introduces significant changes in the deployment of networking infrastructure,
based on fundamental pillars like Network Slicing, Multi-Access Edge Computing (MEC),
Network Functions Virtualization (NFV) and Software-Defined Networking (SDN). Net-
work operations and services are becoming Cloud-enabled in almost all sectors of industry,
including also the telecommunications industry. For this reason, it will be possible the
creation of new opportunities to generate value in the era of autonomous driving, Cloud
computing, Internet of Things (IoT), augmented and virtual reality (AR/VR) services.
The main domains of the 5G system are applications, Cloud, transport, wireless access
and management, including orchestration [3].

The ability to orchestrate and manage the network assumes a crucial role in maximizing
the advantages related to the use of these technologies and architectures. In this sense,
operators need to use open-source developments, avoiding technology and vendor lock-in,
reducing operating costs and time-to-market for new products.

1

2 Introduction

1.2 Motivation

In parallel to the improvements made in 5G networks, a number of open-source Network
Service Orchestration (NSO) solutions, based on a software-driven approach, have appeared
with the aim of allowing telecommunications operator to manage, module and automate
their networks and services, with a complete orchestration framework.

In this context, the Open Network Automation Platform (ONAP) emerged as a very
valuable open-source project, both as a standards-aligned and standards-influencing solu-
tion for the support of multi-domain and end-to-end service orchestration and automation.

In Portugal, the 5G Mobilizer project aims to be an instrument for the development
and innovation of 5G technology covering all functional domains: access, core, and vertical
sectors. Within the scope of the project, all products from all domains will be integrated,
validated, tested, and demonstrated in an ecosystem that promotes new 5G services, which
will benefit from a realistic test environment. This project has the participation of several
industrial entities, Altran included, with activity in the telecommunications sector and also
counts with the collaboration of four entities of the national scientific and technological
system. Apart from other contributions to this project, Altran is developing and testing
an open-source NSO solution to orchestrate and automate services and resources in 5G
networks [4].

1.3 Objectives

This Dissertation aims to integrate services developed for 5G networks, by enabling es-
sential lifecycle management operations (e.g., instantiation, termination, etc.) using a
reference open-source orchestration platform. In order to address the proposed objective,
the following stages were defined:

• Study and analysis on important concepts about 5G networks, Content Delivery Net-
work (CDN) services, orchestration, open-source NSO solutions and there modeling
languages;

• Study and practice on the Camunda Business Process Management (BPM) platform,
including design and execution of workflows;

• Study and comprehension of the orchestration platform and their operations;

• Integration of a 5G service with the orchestration platform;

• Design, implementation and validation of service lifecycle management operations;

• Tests and analysis for improving the quality of the designed workflow.

1.4 Contributions 3

1.4 Contributions

The contributions of this work include:

• The design and development of the scale-out operation of a 5G service, which com-
prises lifecycle management functions, such as the creation, instantiation, etc.

• The validation of the considered orchestration platform in a 5G network congestion
scenario.

The development of this Dissertation contributed to the 5G Mobilizer project.

1.5 Document Structure

The structure of this Dissertation is organized as follows:

• Chapter 1 – introduces core topics with the context, motivation, goals and contribu-
tions of this work;

• Chapter 2 – provides the essential concepts and key enablers of the 5G networks as
well as an overview of the orchestration area along with existing solutions.

• Chapter 3 – presents the used orchestration solution and the definition of a Use Case
scenario;

• Chapter 4 – describes the implementation environment and design process stages,
and also detailed information about the operation design elements;

• Chapter 5 – describes the operation design to orchestrate the proposed Use Case and
highlights key activities that are performed;

• Chapter 6 – provides the tests performed and the analysis of the obtained results;

• Chapter 7 – presents the conclusions and the future work.

Chapter 2

State of the Art

This Chapter presents a review of the essential background concepts and the state of the
art. It begins, in Section 2.1, with a brief overview about the evolution of mobile networks
and the presentation of 5G technology, including its standardization, usage scenarios, re-
quirements, architecture, and key enablers. The Section 2.2 comprises the main concepts
of orchestration and some advances in orchestration mechanisms, with special attention
to the Closed-loop Control theme presented in subsection 2.2.3.1. Following, Section 2.3
summarizes and presents open-source NSO solutions for network automation. Then, in
Section 2.4 the principal modeling languages and its value for process orchestration are
presented. The Section 2.5 introduces BPM tools for workflow and process automation.
Finally, Section 2.6 presents the role of CDN in the distribution of digital content.

2.1 Fifth-Generation of Mobile Communications

The history of mobile communications technologies is divided into generations with the first
generation being characterized by the analog mobile radio systems, the second generation
was the first with digital mobile systems, and the third generation was the first mobile
system handling broadband data. The fourth-generation (4G) or Long-Term Evolution
(LTE), provides even better support for mobile broadband as described in [5].

The latest generation of mobile communications being implemented is 5G, which is
projected to meet diverse and stringent requirements that are currently not supported by
current mobile networks, like ubiquitous connectivity (connectivity available anywhere),
high-speed connection (ten times higher than 4G) and zero latency (lower than few mil-
liseconds) [6]. This “revolution” is catalyzed by the way that society creates, shares and
consumes information. The main drivers behind the anticipated traffic growth are Device
proliferation (volume of devices connected), Video usage (e.g., video-on-demand services)
and Application uptake [7].

5

6 State of the Art

2.1.1 Standardization

The process of defining a standard for mobile communication is an iterative and ongoing
process. The standardization process of 5G mobile networks is defined by various entities
that work together contributing to the creation of technical specifications and standards
as well as regulation in the mobile communications area. These can be divided into three
groups: Standards Developing Organizations (SDO), regulatory bodies and administra-
tions, and industry forums [8].

The International Telecommunication Union (ITU) is a standardization group that co-
ordinates the contributions of industry, government, and private sector in the development
of global broadband multimedia International Mobile Telecommunication system (IMT).
IMT is a nomenclature used by the ITU community to designate broadband mobile sys-
tems. It encompasses IMT-2000 (3G), IMT-Advanced (4G) and IMT-2020 (5G) collectively
[9]. ITU defined the process of evaluation and the subsequent selection of mobile technolo-
gies that fulfill several established technical parameters (peak data rate, latency, spectrum
efficiency, etc.). In this regard, IMT-2020 are mobile systems that include the new capa-
bilities of IMT that go beyond those of IMT-Advanced which would make IMT-2020 more
efficient, fast, flexible, and reliable when providing diverse services in the intended usage
scenarios [10], presented in Section 2.1.2.

The ITU-Radiocommunications Sector (ITU-R) develops and adopts the international
regulations on the use of the radio frequency spectrum. IMT-2020 represents the latest
deployment on the standardization of 5G globally, contributing mainly to the standardiza-
tion timeline and the requirements of 5G mobile networks, both widely adopted by most
of the standardization bodies and forums [11].

The Third Generation Partnership Project (3GPP) is the main organism that develops
technical specifications for advanced mobile communications including 5G. These techni-
cal specifications are then transposed into standards by the seven regional SDO that form
the 3GPP partnership (as shown in Figure 2.1), in Europe (ETSI), India (TSDSI), Korea
(TTA), China (CCSA), Japan (ARIB and TTC), the United States (ATIS). The 3GPP
also receives a contribution from several entities, especially highlighted for Next Generation
Mobile Networks Alliance (NGMN) that provided the initial concept of network slicing,
and 5G Public-Private Project (5G-PPP), in Europe, that have an important role in archi-
tectural aspects of 5G [2, 8, 12, 13]. The regional SDO is also responsible for establishing
and enforcing an Intellectual Property Rights (IPR) policy [14].

ARIB, Japan
ATIS, USA
CCSA, China
ETSI, Europe
TSDSI, India
TTA, Korea
TTC, Japan

Technical
specifications

General policy
and strategy

Standards

Figure 2.1: Regional SDO (adapted from [14]).

2.1 Fifth-Generation of Mobile Communications 7

18 Rec. ITU-R M.2083-0

The timelines associated with these different factors are depicted in Fig. 5. When discussing the

phases and timelines for IMT-2020, it is important to specify the time at which the standards are

completed, when spectrum would be available, and when deployment may start.

FIGURE 5

Phase and expected timelines for IMT-2020

M.2083-05

2000 2014 2015 2016 2017 2018 2019 2020~

Spectrum for
IMT

Spectrum implementation

Enhancement and related development of standards
(Rec. ITU-R M.1457 and ITU-R M.2012)

Systems deployment
IMT-

and
IMT-advanced

and their
enhancement

2000

Evolution/Integration with other radio systems
Other radio

systems

~

New elements
to offer

capabilities of
IMT-2020 Vision Requirements

Standards
development

Standards
enhancement

Systems
deployment *

The sloped dotted lines in systems deployment indicate that the exact starting point cannot yet be fixed.

: Possible spectrum identification at WRC-15 and WRC-19

 * : Systems to satisfy the technical performance requirements of IMT-2020 could be developed before year 2020 in some countries.
: Possible deployment around the year 2020 in some countries (including trial systems)

6.2.1 Medium term

In the medium-term (up to about the year 2020) it is envisaged that the future development of

IMT-2000 and IMT-Advanced will progress with the ongoing enhancement of the capabilities of the

initial deployments, as demanded by the marketplace in addressing user needs and allowed by the

status of technical developments. This phase will be dominated by the growth in traffic within the

existing IMT spectrum, and the development of IMT-2000 and IMT-Advanced during this time will

be distinguished by incremental or evolutionary changes to the existing IMT-2000 and

IMT-Advanced radio interface specifications (i.e. Recommendations ITU-R M.1457 for IMT-2000

and ITU-R M.2012 for IMT-Advanced, respectively).

It is envisaged that the bands identified by WRCs will be made available for IMT within this

timeframe subject to user demand and other consideration.

6.2.2 Long term

The long term (beginning around the year 2020) is associated with the potential introduction of

IMT-2020 which could be deployed around the year 2020 in some countries. It is envisaged that

IMT-2020 will add enhanced capabilities described in § 5, and they may need additional frequency

bands in which to operate.

Figure 2.2: Phases and expected timelines for IMT-2020 by ITU-R [11].

SDO develop and agree on technical standards for mobile communications systems,
in order to provide interoperability between those products and make it possible for the
industry to produce and deploy standardized products [8]. 3GPP introduces new services
and new features via releases. Every release is staggered and work is done on multiple
Releases in parallel at different stages [14]. At the moment, 3GPP is finalizing work on
Release-16 and work is already well in progress on Release-17 (Stage 1) as stated in [15].

The timelines associated with IMT-2020 depend on several factors, e.g., technical ca-
pabilities and technology development, standards development and their enhancement,
spectrum deployment, etc. [11]. These factors are interrelated as depicted in Figure 2.2.
The 3GPP standards for 5G are expected to become available for commercial deployment
and service delivery between 2020 and 2030 [15].

2.1.2 Use Cases and Requirements

As stated by 3GPP in the specification TS 22.891 [16] and by ITU-R in the recommendation
M.2083-0 [11], the requirements of 5G usage scenarios have been defined and are categorized
into the following groups:

• Massive Internet of Things (mIoT) by 3GPP and massive Machine Type Communi-
cations (mMTC) by ITU – are characterized by a huge number and wide variety of
connected devices (e.g., sensors and wearables), commonly transmitting a relatively
low volume of non-delay sensitive data. Devices are required to be low cost, and have
a very long battery life. It comprises use cases, such as smart home and city, smart
utilities, e-Health, and smart wearables. More information about this category can
be found in [17].

8 State of the Art

Game / Sports

Industry Robot

/ Drone

Massive MTC

Vehicle /

autonomous

driving

Figure 2.3: Categories of different use cases defined by 3GPP [16].

• Critical Communications (CC) by 3GPP and ultra-Reliable and Low Latency Com-
munications (uRLLC) by ITU – has highly rigorous requirements for capabilities,
such as availability, latency, reliability, and throughput. Some examples in [18], in-
clude wireless control of industrial manufacturing or production processes, remote
medical surgery, distribution automation in a smart grid, transportation safety, etc.

• Enhanced Mobile Broadband (eMBB) by 3GPP and ITU – addresses the human-
centric use cases for access to services, multimedia content, and data. This category
is decomposed into five sub-categories defining High Data Rates, Higher Density,
Deployment and Coverage, Higher User Mobility and Devices with highly variable
data rates. The requirements analysis for this usage can be found in [19].

• Network Operation by 3GPP – addresses the functional system requirements includ-
ing aspects, such as flexible functions and capabilities, new value creation, scalability,
network slicing, efficient content delivery, optimizations and enhancements, migra-
tion, interworking, and security. Further details are available in [20].

• Enhancement of Vehicle-to-Everything (eV2X) by 3GPP – this use case group de-
mands low latency and high-reliability communications to support real-time response
to avoid road accidents. It comprises autonomous driving, safety and non-safety as-
pects associated with the vehicle [21].

The conceptual diagram, illustrated in Figure 2.3, represents the directions of service im-
provements proposed in the technical reports from 3GPP.

2.1 Fifth-Generation of Mobile Communications 9

Figure 2.4: Enhancement of key capabilities from IMT-Advanced to IMT-2020 [23].

In the 3GPP specification TS 22.891 [16] several use cases have been identified. The
implementation of 5G network will originate new use cases and also new services and
business models, mainly empowering the support of various sectors of the industry, referred
to as “verticals”, e.g., Automotive, Smart Cities, e-Health, Public Safety, etc. [22].

To meet the requirements previously mentioned, a broad variety of capabilities, tightly
coupled with intended usage scenarios and applications for IMT-2020 is envisioned. ITU-
R defines, in [11], eight Key Performance Indicators (KPI). The key design principles are
flexibility and diversity to serve many different use cases and scenarios, for which the
capabilities of IMT-2020, includes KPI for metrics, such as e.g., latency, mobility, etc.

As stated, 5G should deliver significantly increased operational performance (e.g., in-
creased spectral efficiency, higher data rates, low latency), as well as superior user experi-
ence (near to fixed network but offering full mobility and coverage). Also needs to supply
the deployment of mIoT, while still offering acceptable levels of equipment cost, energy con-
sumption, network deployment, and operation cost. It needs to support a wide variety of
applications and services [23]. The comparison of key capabilities between IMT-Advanced
(4G) and IMT-2020 (5G), is illustrated in Figure 2.4 according to ITU-R M.2083-0 [23].

2.1.3 Architecture

In order to meet the requirements presented in Section 2.1.2, it is essential that the net-
work should be architected for inherent scalability, versatility, and performance to cost-
effectively.

The architecture for 5G System (5GS) was accomplished by 3GPP in the specification
TS 23.501 [24] which covers the study “System Architecture for the 5G System” and in
the specification TS 38.801 [25] which is focused on the study of “RAN Architecture and
Interfaces” from an Access Architecture and Interface specification point of view.

10 State of the Art

The specification TS 23.501 includes the definition of scenarios in all aspects (both
roaming and non-roaming), mobility within 5GS, Quality of Service (QoS), policy control
and charging, etc. [24]. In the specification TS 38.801, the study item “New Radio Access
Technology” is addressed [25].

A service-based architecture was adopted for the 5GS, which brings improved radio
units known as Next-Generation Radio Access Network (NG-RAN) for 5G Access Network,
the introduction of network slicing concept and the separation of Control Plane (CP) and
Data Plane (DP) for 5G Core Network, that will require a Cloud-native design to deliver
5G services and a strong reliance on virtualized functions [26].

The 5GS architecture is projected to support services and data connectivity, this im-
plies major changes in the implementation and deployments to use techniques based on
Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) [24],
such concepts are covered later in Section 2.1.4.1 and 2.1.4.2, respectively. In the following
subsections, a brief description of the model and concepts of architecture is carried out.

2.1.3.1 Service Based Architecture

The 5GS architecture is defined as a service-based architecture, i.e., a system architecture
in which the system functionality is achieved by a set of Network Functions (NF) providing
services to other authorized NF to access their services. The interaction between NF is
represented in two ways by 3GPP in the specification TS 23.501 [24]:

• A service-based representation, where NF (e.g., Access and Mobility Management
Function (AMF)) within the CP enables other authorized NF to access their services.
This representation also includes point-to-point reference points where necessary;

• A reference point representation, shows the interaction that exist between the NF
services in the NF described by point-to-point reference point between any two NF
(e.g., AMF and Session Management Function (SMF)).

The architecture of 5GS is represented in Figure 2.5, in which the service modularity
breaks down into the following self-contained functional components communicating via
standardized lightweight interfaces (e.g., Namf, Nnef, etc.) [24, 27].

A service-based interface expresses how the set of services is exposed or provided by a
given NF, which employs a well-defined Representational State Transfer (REST) interface
using HTTP/2 over TCP/TLS with JavaScript Object Notation (JSON) bodies. The NF
service operations are invoked through these interfaces. NF are independent, self-contained,
and reusable. The independent scaling of the capacity of CP and DP is achieved by their
separation. For example, if more CP capacity is needed, it should be straightforward to
add it without affecting the DP of the network. Further information about this category
can be found in [28].

2.1 Fifth-Generation of Mobile Communications 11

 Legend:

Data Plane

Control Plane Service-based int.

Point-to-point int.

PCF
(R)AN
SCP
SMF
UDM
UE
UPF

- Policy Control Function
- Radio Access Network
- Service Communication Proxy
- Session Management Function
- Unified Data Management
- User Equipment
- User Plane Function

AMF
AF
AUSF
DN
NEF
NRF
NSSF

- Access and Mobility Management Function
- Application Function
- Authentication Server Function
- Data Network (e.g., Internet access)
- Network Exposure Function
- Network Repository Function
- Network Slice Selection Function

Figure 2.5: 5GS architecture by 3GPP in TS 23.501 (adapted from [24]).

2.1.3.2 Network Slicing

The network slicing concept was introduced by NGMN in [29]. In the context of 5G
networks, this concept allows the telecommunications operators to provide different ser-
vices, with each service having its own performance requirements, over the same physical
infrastructure.

In accordance with the specification TS 23.501 [24] of 3GPP, the network slicing is
being defined as a logical end-to-end network that can be dynamically created. Network
slicing facilitates multiple logical self-contained networks on top of a common physical
infrastructure platform enabling a flexible stakeholder ecosystem that allows business and
technical innovation integrating physical and/or logical network and Cloud resources into a
programmable, open software-oriented multi-tenant network environment [30]. A network
slice instance is defined within a Public Land Mobile Network (PLMN) and must include
the Core Network, the CP and DP network functions as well as the 5G Access Network.

The concept of 5G network slicing is illustrated in Figure 2.6, with different scenarios
running on a common underlying multi-vendor and multi-domain virtualized networking
environments. Each slice consists of a set of virtual NF that run on the same physical
infrastructure independently managed and addresses a particular use case [31, 32].

Network slicing is a complex concept that is built on top of other main concepts,
like e.g., Automation, Isolation, Customization, Elasticity, Programmability, etc., such
concepts are described in [30].

12 State of the Art

Figure 2.6: 5G Network slicing concept with different scenarios [31].

The 5G network slicing enablers are NFV, SDN, Multi-access Edge Computing (MEC),
Cloud/Fog Computing, Network Hypervisors, Docker Containers and Virtual Machines
(VM) [6].

2.1.3.3 Next-Generation Radio Access Network

To meet the requirements presented in the use cases and to exploit the potential of new
technologies, 3GPP is redesigning and optimizing the new radio-access technology for in-
herent efficiency, flexibility, and scalability [8].

The NG-RAN is an innovative air interface called New Radio (NR), which is designed
primarily for new spectrum bands [25]. An overall description of the NG-RAN is addressed
in [33] and an overview of historical and legacy RAN architectures is provided in [34].
Further details about NR Physical Layer can be found on 3GPP specifications TS 38.201
[35], TS 38.211 [36] and TS 38.212 [37]. Although relevant, these 5G characteristics are
out of the purpose of this Dissertation.

2.1.4 Key Enablers

In a digital world, the innovation cycles intensify and demand greater flexibility and dy-
namism than hardware-based devices allow. A hard-wired network with unique functions
boxes is hard to maintain, slow to evolve, and prevent Communication Service Providers
(CSP) from offering dynamic services [38, 39].

As mentioned in Section 2.1.3, 5G contemplates an architecture that leverages the
structural separation of hardware and software, supported by network programmability.
Network slicing concept is only possible when resources, virtualization, orchestration and

2.1 Fifth-Generation of Mobile Communications 13

isolation of the network are accomplished [31]. Network operators will be able to deploy,
create and manage their services, due to the technological advances in NFV and SDN.

The main enablers like NFV, SDN, Telco Cloud and MEC are encompassed in the
following subsections.

2.1.4.1 Network Function Virtualization

NFV is standardized by the European Telecommunications Standards Institute (ETSI),
which is a 3GPP partner in Europe. The network operators have started an initiative on
NFV and Industry Specification Group (ISG) was founded by ETSI, a group in charge
of developing requirements and architecture for virtualization of various functions within
telecoms networks [38, 39]. The ETSI ISG NFV helps by setting requirements and ar-
chitecture specifications for hardware and software infrastructure needed to make sure
virtualized functions are maintained, and also manages guidelines for developing NF [39].

NFV is a network architecture to transform the paradigm of the way that network
operators manage, deploy, and architect networks. NFV aims at reinforcing the diversity of
network devices onto industry-standard high-volume servers. These servers can be located
at the different network nodes as well as end-user premises.

In this context, NFV relies upon but differs from traditional server virtualization.
Unlike server virtualization, Virtualized Network Functions (VNF) may consist of one
or more VMs running different software and processes in order to replace custom hardware
appliances. Multiple VNF are to be used in sequence with the aim to provide meaningful
services to the customer [38]. NFV decouples NF, such as routing, intrusion detection,
firewalls from proprietary hardware platforms and implements these functions in software.
It utilizes standard virtualization technologies that lead on high-performance hardware
to virtualize NF. It is applicable to any DP processing or CP function in both wired and
wireless network infrastructures [40, 41]. ETSI specification GS NFV 002 [42] describes the
major differences in the virtualized network service provisioning is realized in comparison
to current practice. The NFV follows three base principles:

• Decoupling software from hardware: as the software elements of a NF and
their hardware counterparts are no longer bound, their evolution can happen inde-
pendently, which enables the software to progress separately from the hardware, and
vice versa;

• Dynamic operation: the decoupling of the functionality of the NF into instantiable
software components provides greater flexibility to scale the actual VNF performance
more dynamically and with finer granularity;

• Flexible network function deployment: the detachment of software components
from hardware enables more efficient use of the virtualized infrastructures, allowing
for a more automated and faster instantiation of NF and VNF over the same physical
platform.

14 State of the Art

ETSI

ETSI GS NFV 002 V1.2.1 (2014-12) 14

Figure 4 shows the NFV architectural framework depicting the functional blocks and reference points in the NFV
framework. The main (named) reference points and execution reference points are shown by solid lines and are in the
scope of NFV. These are potential targets for standardization. The dotted reference points are available in present
deployments but might need extensions for handling network function virtualisation. However, the dotted reference
points are not the main focus of NFV at present. The architectural framework shown focuses on the functionalities
necessary for the virtualisation and the consequent operation of an operator's network. It does not specify which
network functions should be virtualised, as that is solely a decision of the owner of the network.

Computing
Hardware

Storage
Hardware

Network
Hardware

Hardware resources

Virtualisation Layer
Virtualised

Infrastructure
Manager(s)

VNF
Manager(s)

NFV
Orchestrator

OSS/BSS

NFVI

VNF 3VNF 1

Execution reference points Main NFV reference pointsOther reference points

Virtual
Computing

Virtual
Storage

Virtual
Network

NFV Management and Orchestration

EM 2 EM 3EM 1

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

Vl-Ha

Service, VNF and
Infrastructure
Description

VNF 2

Figure 4: NFV reference architectural framework

The following clauses give an overview of the functional blocks in the architectural framework.

7.2.2 Virtualised Network Function (VNF)

A VNF is a virtualisation of a network function in a legacy non-virtualised network. Examples of NFs are 3GPP™
Evolved Packet Core (EPC) [i.2] network elements, e.g. Mobility Management Entity (MME), Serving Gateway
(SGW), Packet Data Network Gateway (PGW); elements in a home network, e.g. Residential Gateway (RGW); and
conventional network functions, e.g. Dynamic Host Configuration Protocol (DHCP) servers, firewalls, etc.
ETSI GS NFV 001 [3] provides a list of use cases and examples of target network functions (NFs) for virtualisation.

Functional behaviour and state of a NF are largely independent of whether the NF is virtualised or not. The functional
behaviour and the external operational interfaces of a Physical Network Function (PNF) and a VNF are expected to be
the same.

A VNF can be composed of multiple internal components. For example, one VNF can be deployed over multiple VMs,
where each VM hosts a single component of the VNF. However, in other cases, the whole VNF can be deployed in a
single VM as well. Detailed implementation methods are outside the scope of the present document.

7.2.3 Element Management (EM)

The Element Management performs the typical management functionality for one or several VNFs.

Figure 2.7: ETSI NFV reference architecture [42].

This architecture, from a high-level perspective, is organized into three main functional
domains [42]:

• VNF: comprises the software implementation of a NF, such as routing, etc., which
is capable of running over the NFV Infrastructure (NFVI);

• NFVI: includes the different physical resources and how can be virtualized, and
supports the execution of the VNFs;

• NFV Management and Orchestration (MANO): covers lifecycle management
and the orchestration of physical and/or software resources that support the infras-
tructure virtualization, and the lifecycle management of VNFs. It also focuses on all
virtualization-specific management tasks necessary in the NFV framework.

The NFV reference architectural framework, depicted in Figure 2.7, is formed by three
main areas (VNF, NFVI, and NFV-MANO), along with the functional blocks and refer-
ence points. In the following list, important functional blocks for the management and
orchestration operations are described [42]:

• NFV Orchestrator (NFVO): is in charge of the management and orchestration
of NFVI and software resources, and realizing network services on NFVI.

• VNF Manager (VNFM): is responsible for VNF lifecycle management and oper-
ations, such as instantiation, query, scaling, update, and termination.

2.1 Fifth-Generation of Mobile Communications 15

• Virtualized Infrastructure Manager (VIM): comprises the functionalities that
are used to manage and control the interaction of a VNF with computing, storage,
and network resources under its authority, as well as their virtualization.

• Service, VNF and Infrastructure Description: this data-set provides informa-
tion regarding the VNF deployment template, service-related information, and NFVI
information models, which are used internally within NFV-MANO.

• Operations Support Systems and Business Support Systems (OSS/BSS):
is responsible for coordinating with the traditional network system, such as OSS and
BSS to ensure the NFV-MANO, NFVI and functions running on legacy equipment
with pre-defined communications interfaces. This functional element is defined in
Section 2.2.

2.1.4.2 Software-Defined Network

Open Networking Foundation (ONF) is a non-profit operator-led consortium that specified
and standardized SDN [43]. The architecture of SDN is specified in the ONF specifications
TR-502 [44] and TR-521 [45]. SDN consists of the separation between CP (i.e., control
logic) and DP (i.e., data forwarding equipment) through the definition of well-defined
Application Programming Interfaces (API), where the network intelligence and state are
logically centralized, gaining a global view of the entire network.

The shifting of control into manageable computing nodes, allows underlying network
infrastructure to be abstracted for network services and applications [44].

The three architectural principles that support SDN are identified below and detailed
in ONF TR-521 [45]:

• Decoupling of traffic forwarding and processing from control;

• Logically centralized control;

• Programmability of network services.

Figure 2.8 depicts the reference architectural framework that encompasses three layers and
a management area, identified in [44] and described below:

• Application Plane: consists of one or more applications, each of which has unique
control over a set of resources exposed by one or more SDN controller, communicating
through the Application-Controller Plane Interface (A-CPI);

• Controller Plane: comprises a set of SDN controllers, each of which has exclusive
control over a set of resources exposed by one or more network elements in the
Data Plane, translating also the applications demands to have dynamic and granular
control over the network resources;

16 State of the Art

SDN Architecture Issue 1.0

15

applications may have dynamic and granular control of network resources through direct access

to an SDN controller. Recognizing the likelihood of a business boundary between provider and

customer, it is therefore essential that the architecture recognize a business or organizational

boundary between the SDN controller plane and the applications that use it. Provider and

customer exist in different trust domains.

This architecture document uses colors as a visual aid to emphasize trust domains. Blue is the

default, and may be thought of as a network provider, while other colors, such as green and red,

indicate customers, tenants, or even distinct organizational or application entities within the

overall Blue trust domain.

Figure 3.2 thus shows only a single trust domain. Figure 3.3 extends the idea to show multiple

trust domains. Each trust domain is understood to have its own management functionality. Trust

domains may logically extend into components of other trust domains, as exemplified by the

green and red agents in the blue SDN controller.

Note – It is important to understand that code that executes in the red and green agent

boxes in the controller plane would be installed and managed by the blue administration.

This is the meaning of the phrase logically extend.

Management

Controller

plane

Data

plane

OSS

SDN

controller

Network element

(≥ 1)

NE resources

Application

planeSDN

application

(≥ 1)

SDN

application
OSS

OSS

Coordinator

Coordinator Agent (≥ 1)

SDN control logic

(business

agreements,

credentials, policy,

etc.)

A-CPI: Virtual resource

information model

D-CPI: Resource

information model

Agent (≥ 0)...

Figure 3.3 – SDN overview, with physical data plane

Figure 3.3 also shows agents and coordinators in the SDN controller and the network elements.

The agents support the concept of sharing or virtualizing the underlying resources, for example,

which network element ports are SDN-controlled (as opposed to hybrid or legacy ports), or the

details of the virtual network that are exposed to the SDN applications, while isolating one

Figure 2.8: SDN reference architecture [44].

• Data Plane: contains the network elements, one or more, which include their func-
tionalities and capabilities to the Controller Plane, via the Data-Controller Plane
Interface (D-CPI);

• Management: provides managers to each application, SDN controller and network
element through a functional interface to a manager, allowing for resource allocation
at each layer, setting the initial configuration of the Data Plane, policy definitions at
the Controller Layer or Service Level Agreements (SLA) at the Application Layer.

2.1.4.3 Relationship between NFV and SDN

NFV and SDN are complementary schemes but increasingly co-dependent. While the
former offers the capability to manage and orchestrate the virtualization of resources for
the provisioning of NF and their composition into higher-layer network services, the latter
provides the means to dynamically control the network and the provisioning of Network-
as-a-Service (NaaS).

NFV goals can be achieved using non-SDN mechanisms, relying on the techniques
currently in use in many data centers. But approaches relying on the separation of the CP
and DP as proposed by SDN can enhance performance, facilitate operations, maintenance
procedures and simplify compatibility with existing deployments.

2.1 Fifth-Generation of Mobile Communications 17

NFV is able to support SDN by providing the infrastructure upon which the SDN
software can be run. Furthermore, NFV aligns tightly with the SDN objectives to use
commodity servers and switches. So, either can be used alone, but the two can be com-
bined to obtain greater benefits. Therefore, NFV and SDN form a mutual supplementary
relation in implementing network virtualization [40, 41]. The relationship between these
two paradigms is characterized in documents from ETSI in [46] and from ONF in [47].

2.1.4.4 Telco Cloud

The virtualization of networks associated with the flexibility of NFV and the programma-
bility of SDN leverages the way networks are deployed to the Telco Cloud network infras-
tructure, which operations and network services are made to be Cloud-native [48].

The transformation of the telecommunications industry landscape is changing, with 4G,
a Cloud-native core architecture is becoming the preferred option, but with 5G a Cloud-
native design is a requirement. To meet the scalability, the flexibility, and the performance
to cost-effectively deliver 5G services, a Cloud-native framework able to integrate all VNFs
is required. This would enable operators to create, contract for, or require as a condition
of use, a standardized adapter that would expose all control and management APIs and
data in a common way.

Only by redesigning the software architecture and core functions using Cloud-native
design principles and IT web-based development and methodologies, the CSP can gain the
necessary agility to rapidly deliver new services and reduce their time-to-market. 5G-PPP
provides first insights and trigger discussions about 5G Cloud-native design in [49] and
several use cases are presented in [50].

2.1.4.5 Multi-access Edge Computing

MEC is also one of the key pillars for meeting the demanding KPI of 5G. It offers a Cloud-
based Information Technology (IT) service environment and Cloud-computing capabilities
at the edge of an access network, which contains one or more types of access technology,
and is located close to its users. This environment is characterized by ultra-low latency
and high bandwidth as well as real-time access to radio network information that can be
leveraged by applications as software-only entities that operate on top of a virtualization
infrastructure.

MEC has a similar approach to NFV, because it uses a virtualization platform for
running applications at the mobile edge network. The main purpose of this approach is to
improve the end-users service experience, reduce the load on the transport infrastructure
and minimize any possible failures [51, 52].

ETSI ISG MEC specifies the identified requirements and usage scenarios in [51] and
also in white papers [53] and [54]. The MEC framework and reference architecture are
defined in [55].

18 State of the Art

2.2 Network Orchestration Overview

The architecture of telecommunications operators is logically organized in different layers
with the bottom layers reserved for delivering services and the upper layers deal with
products and marketing domains. The main reference for most CSP is the TeleManagement
Forum1 Frameworx [56], which provides a complete blueprint for the operational aspects
of any digital services business, also a number of best practices and standards targeted
towards architecting standardized solutions [57].

Usually, it is divided into two systems: the Operations Support Systems (OSS) that
comprises all components involved in resource and service management, collaborating to
provide different functionalities, such as service provisioning, monitoring and assurance,
billing, and customer care; and the Business Support Systems (BSS) that includes all the
components concerning the CSP business model and all the interfaces with the customer
[57]. The main focus in this Section is the orchestration domain and only takes into account
the OSS.

As stated in [57], “the word orchestration in the telecommunications industry com-
prises the coordinated execution of workflows to complete a specific objective, consisting
of operations on top of services and resources which may be contained in several domains.”

2.2.1 End-to-End Orchestration

The pre-condition to achieve the end-to-end vision is to enable multi-domain orchestra-
tion, which consists of the orchestration of different infrastructure domains belonging to
different operators [58]. An end-to-end orchestrator is responsible for infrastructure medi-
ation, enabling the complete lifecycle management of all domains and services under the
administration of network operators [57]. This concept is outlined in Figure 2.9 as a com-
bination of orchestration on the ETSI NFV scope, earlier mentioned in Section 2.1.4.1, on
the SDN scope, discussed in Section 2.1.4.2, and on the Legacy Network Controllers scope
for non-virtualized and specific technologic domains [57]. A full analysis of end-to-end
multi-domain management and orchestration frameworks is realized in [58].

End-to-End Orchestration

NFV Orchestrator
(NFVO)

SDN
Controllers

Legacy Network
Controllers

Figure 2.9: End-to-end orchestration (adapted from [57]).

1TM Forum is a telecommunications SDO focused on services.

2.2 Network Orchestration Overview 19

2.2.2 NFV Management and Orchestration

A key goal for service orchestration is to minimize human intervention during the deploy-
ment and management of network services. Many use cases of NFV or SDN require an
orchestration system that coordinates multiple vendors of hardware and software. There
are many techniques for orchestration [59]. An analysis of the architecture of multiple
Management and Orchestration (MANO) systems is presented in [2].

The architecture defined by ETSI NFV is commonly adopted and provides a stable base
to MANO systems [60]. As stated in subsection 2.1.4.1, ETSI NFV-MANO is composed
of VIM, VNFM, and NFVO. This framework is in charge of the provisioning of VNF and
related operations, such as the configuration of the VNF and the infrastructure where these
functions operate on, commonly in data centers. Although, its scope does not include the
management of end-to-end services [61]. The ETSI specification GS NFV-MAN 001 [61]
describes the functional blocks and all reference points of this architectural framework.
In [2], 5G-PPP summarizes the developments in the MANO architectures by ETSI and
3GPP. Finally, the NGMN presents in [62] the key requirements and high-level architecture
principles of network and service management including orchestration for 5G.

2.2.3 Advances in Orchestration Mechanisms

2.2.3.1 Closed-Loop Control

Current OSS models have static decision-making rules, and when taken the challenge of
controlling the operations of an SDN and NFV virtualization enabled network, such as
5G, the lack of more granular control over the decision taken place in these systems, will
lead to inefficiencies [57]. An important mechanism for the next-generation of OSS is
the adoption of closed-loop control that is based on the OODA loop (“Observe, Orient,
Decide, Act”). OODA loop is a methodology for the learning, growth, and thrives in
changing environments, that was developed by the military strategist John Boyd during
the analysis of combat scenarios as defined in [63].

The use of the OODA allows for flexibility in the adoption of a variety of new au-
tomatizations, aware of its operating environment and able to respond dynamically to
observed changes, characteristics which capitalize the efficiency in the operations over the
operators’ Cloud-based infrastructure, and in the fulfillment of multiple and dynamic 5G
requirements. It also allows for the evolution in the Self-Organized Networks (SON) way,
aiming at making service and resource management more autonomous and more automatic,
allowing for the reduction of the cost of the ever more complex and dynamic managing
networks [64].

The OODA loop is a vital point in the process of making network management more
autonomous. An interpretation of this context is provided in Figure 2.10, which involves
monitoring (data collection), data analysis, decision making, and orchestration (decision
enforcement) towards more intelligent management.

20 State of the Art

Monitoring

Services & Resources

Analytics Policy
Framework

Orchestration

Figure 2.10: Closed-loop orchestration in network management (adapted from [57]).

2.2.3.2 Policy-Based Network Management

The Policy-Based Network Management (PBNM) paradigm defines the usage of policy
rules to manage one or more entities. Each policy rule is composed of a set of conditions
and a corresponding set of actions. The condition defines when the policy rule is applicable.

This paradigm was conceptualized as a set of mechanisms that can be used to “fine-
tune” different network services. A PBNM-based system provides a set of mechanisms that
can be used to condition traffic flowing through the network. These systems also have the
ability to define a complex set of mechanisms that can be used to implement a predefined
service [65].

Policy-based systems are a promising solution for implementing many forms of large-
scale, adaptive systems that dynamically change their behavior in response to changes
in the environment or to changing application requirements. This can be achieved by
modifying the policy rules interpreted by distributed entities, without recoding or stopping
the system. This aspect of policy-based management permits the system to adapt to
evolutionary changes and new application requirements [66, 67].

2.3 Network Service Orchestration

There are several software artifacts related to orchestration covering from a single Cloud
environment up to more complex scenarios involving multi-domain orchestration. They
are the result of open-source initiatives, commercial vendors, or research projects.

Open-source approaches significantly accelerate consensus that forms a basis for an
ecosystem of solutions and makes it possible to create a single unified orchestration abstrac-
tion [68]. A NSO refers to a software solution that allows network operators to configure
and automate multiple network elements as per a given service definition and workflow [69].
NSO solutions need to perform management tasks, such as remote device configuration,
monitoring, and fault management [68].

2.3 Network Service Orchestration 21

These solutions, help customers increase revenue by designing and deploying new ser-
vices so much faster, i.e., the time-to-market is reduced from months to a few hours [69].
NSO avoids technology and vendor lock-in for investment protection. It allows easy integra-
tion and automation with customers is self-service portals, third-party Web applications,
OSS/BSS via REST APIs and has no hard-coded parameters for the rollout of new device
types and new services [69].

The most challenging issue in this environment is deploying and organizing in large-scale
and multi-domain infrastructure. The combination of Cloud computing, NFV, and SDN
can achieve the best operation. In order to realize the full potential of these technologies,
operators need to use open-source developments [59]. The following subsections presents
two NSO solutions as well as a summary of open-source NSO implementations.

2.3.1 Open Network Automation Platform

ONAP is an open-source software project of the Linux Foundation, which provides a com-
prehensive platform for design, creation, orchestration, management and automation of
network and edge computing services, that will enable network operators, Cloud providers,
and enterprises to rapidly automate and support complete lifecycle management of a vari-
ety of network services [70, 71]. It offers a unified framework that allows vendor-agnostic
and policy-driven service design, implementation, KPI monitoring and lifecycle manage-
ment enabling massive scale automation capabilities for both physical and virtual network
elements [72]. The purpose is to operate a common platform that will be able to provide
efficient, end-to-end infrastructure management [59].

From a high-level perspective, the architectural framework of ONAP, illustrated in
Figure 2.11, is composed of two main domains with numerous subsystems separated inside
of them: the Design-Time and the Run-Time environment [70].

The Design-Time is used as a development environment that allows the creation of
network services with a declarative modeling language, which makes it possible to specify
the requirements and functionalities of each service. It allows the modeling of resources,
services, products and their management, and control functions. This is achieved by using
a common set of specifications and policies for controlling service behavior and process
execution, which facilitates the reuse of models and improves efficiency. It includes the
Service Design and Creation (SDC) module that is used as a visual tool for designing and
modeling assets used in all ONAP components [70].

The Run-Time environment is composed of several software frameworks with MANO
functionalities that executes policies and rules prepared in the Design-Time environment
to handle tasks, such as analytics, policy, monitoring, service orchestration for end-to-end
service automation. This allows for the distribution of policy enforcement and templates
among various ONAP modules, such as the Service Orchestrator (SO), Data Collection,
Analytics and Events (DCAE), Controllers, Active and Available Inventory (AAI) [70].

22 State of the Art

Figure 2.11: ONAP architecture overview [73].

ONAP provides the solution to the increasing demand for a proactive response to net-
work events and service lifecycle management through a Closed Loop Automation Man-
agement Platform (CLAMP).

The ONAP deployment methodology needs to be flexible, allowing different scenarios
and purposes for various operator environments. In this sense, it is possible to select only
the necessary ONAP components to integrate into other systems. The platform needs to
be highly reliable, scalable, secure, and easy to manage. To achieve all these goals, ONAP
has designed as a microservices-based system, with all components released as Docker
containers following best practice building rules to optimize their image size [70].

The ONAP community provides some reference designs, i.e., blueprints for 5G in spec-
ified use cases exploiting the combination of NFV and SDN technologies. Further infor-
mation about the ONAP 5G blueprint can be found in [70] and [74].

2.3.2 Open Source Management and Orchestration

ETSI Open Source MANO (OSM) as the name implies is an open-source project conducted
by ETSI to develop an NFV-MANO stack that meets the requirements of production NFV
networks and is aligned with ETSI NFV Information Models and APIs. OSM enables
increased multi-vendor interoperability versus traditional standardization models and pro-
prietary tools [75, 76].

The main goal of ETSI OSM is the development of a community-driven production-
quality end-to-end NSO for telco services, capable of modeling and automating real telco-
grade services, with all the intrinsic complexity of production environments [77].

2.3 Network Service Orchestration 23

OSM provides the capability of realizing one of the main promises derived from NFV
and the dynamic capabilities that it brings: creating networks on-demand known as NaaS
for either their direct exploitation by the service provider or for their potential commer-
cialization to third parties [77].

In that sense, OSM works as a NSO solution, intended to provide the capability of
creating network services on-demand and returning a service object ID that can be used
later as a handler to control the whole lifecycle and operations of the network service [77].

In OSM there are two types of NaaS service objects that OSM is able to provide on-
demand to support the NaaS capability: the Network Service (NS) and the Network Slice
Instance (NSI) [77]. OSM, as manager function of a service platform, consumes services
from other service platforms and controls a number of managed functions in order to
create its own composite higher-level service objects. The reference architecture of service
platforms and common management is explored in [78].

In summary, with the significant advancements incorporated into release five, the OSM
community foresees a successful adoption of the platform as a key enabler for carrier-class
NFV-MANO deployments around the world. OSM has become a reliable and viable option
for NFV orchestration over production environments [79].

2.3.3 Open-Source Solutions

A number of orchestration solutions based on the ETSI MANO architecture have emerged
with the objective of proposing a complete orchestration framework. The main charac-
teristics of each open-source project are summarized in Table 2.1 and are organized as
follows: leader entities, VNF definition, resource domains, NFV-MANO scope, interface
management, and coverage area [68].

Table 2.1: Summary of open-source NSO implementations [68].

Solution Leader VNF Definition
Resource Domain MANO Interface Management Multiple

DomainsCloud SDN NFV Legacy NFVO VNFM VIM CLI API GUI

Cloudify GigaSpace TOSCA
√ √ √ √ √ √ √

ESCAPE FP7 UNIFY Unify
√ √ √ √ √ √ √ √

Gohan NTT Data Own
√ √ √ √ √ √ √ √ √

ONAP
Linux
Foundation

HOT, TOSCA,
YANG

√ √ √ √ √ √ √ √ √ √ √

Open Baton
Fraunhofer /
TU Berlin

TOSCA, Own
√ √ √ √ √ √ √

OSM ETSI YANG
√ √ √ √ √ √ √ √ √

Tacker
OpenStack
Foundation

HOT, TOSCA
√ √ √ √ √ √ √

TeNOR FP7 T-NOVA ETSI
√ √ √ √ √ √

X-MANO H2020 VITAL TOSCA
√ √ √ √ √

XOS ON.Lab —
√ √ √ √ √ √ √

Although the progress made by ETSI in defining architecture and interfaces, each
solution uses a particular implementation and data model, which makes interoperability
difficult to achieve [68].

24 State of the Art

2.4 Modeling Languages

In order to add value, orchestration must address the problem of reducing time-to-market.
This means that it has to be model- and catalog-driven, to stipulates both services and de-
vice configuration using a declarative data model. This Section presents the main modeling
languages for this Dissertation and its value for the orchestration process.

2.4.1 Heat Orchestration Template

The OpenStack foundation defines a module called Heat Orchestration Template (HOT),
which is an orchestration engine to launch multiple composite Cloud applications based on
templates in the form of text files that can be treated as code [80]. In other words, Open-
Stack Heat is a declarative model for orchestrating OpenStack resources and managing
their lifecycle, to realize the VNF onboarding [71].

Heat provides the ability to deploy instances, volumes and other OpenStack services
using YAML based templates that stands for Yet Another Markup Language (YAML).
YAML is a format for expressing structured data and it allows to describe the infrastructure
as a code. Each section is used to describe resources, parameters, etc., and a single template
describes the configuration of an entire system. Expressing these in highly readable YAML
makes it easy to manage and modify system configurations, and also the fact that they are
text-based makes them easy to reuse [81]. Heat provides compatibility with the Amazon
Web Services (AWS) CloudFormation template format to leverage AWS products and
both an OpenStack native REST API and a CloudFormation compatible query API [80].
Further information about this modeling language can be found in [82].

2.4.2 Topology and Orchestration Specification for Cloud Applications

The international consortium of vendors and users known by the Organization for the
Advancement of Structured Information Standards (OASIS) defined the Topology and
Orchestration Specification for Cloud Applications (TOSCA), to enhance the portability of
Cloud applications and services. The main goal is to permit the interoperable description of
application and infrastructure Cloud services, the relationships between parts of the service,
and the operational behavior of these services (e.g., deploy, monitoring) independent of
the supplier creating the service, and any particular hosting technology or Cloud provider.
TOSCA will also enable the association of that higher-level operational behavior with
Cloud infrastructure management.

This standardization delineates a metamodel for specifying both the structure of a ser-
vice as well as its orchestration aspects. The combination of structure and orchestration in
a Service Template describes what is needed to be preserved across deployments in differ-
ent environments to enable automated and interoperable deployment of Cloud services and
their management throughout the full lifecycle (e.g., scaling, etc.) when the applications
are ported over alternative Cloud environments [83].

2.4 Modeling Languages 25

TOSCA-v2.0-csd02 25 June 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 21 of 170

3 TOSCA core concepts
The TOSCA language introduces a YAML-based grammar for creating service templates that define the
lifecycle management of application, infrastructure, and network services. The language defines a
metamodel for specifying both the structure of a service as well as its management aspects. Within a
service template, a Topology Template defines the structure of a service. Interfaces, Operations, and
Workflows define how service elements can be created and terminated as well as how they can be
managed during their whole lifetimes. Policies specify operational behavior of the service such as quality-
of-service objectives, performance objectives, and security constraints, and allow for closed-loop
automation. The major elements defining a service are depicted in Figure 1.

3.1 Topology Templates, Node Templates, and Relationships

Within a Service Template, a Topology Template defines the topology model of a service as a directed
graph. Each node in this graph is represented by a Node Template. A Node Template specifies the
presence of an entity of a specific Node Type as a component of a service. A Node Type defines the
properties of such a component (via Node Type Properties) and the operations (via Interfaces) available
to manipulate the component. Node Types are defined separately for reuse purposes. In a Topology
template a Node Template assigns values to the properties defined in the Node Type.

Figure 1: Structural Elements of a Service Template and their Relations

For example, consider a service that consists of an application server, a process engine, and a process
model. A Topology Template defining that service would include one Node Template of Node Type
“application server”, another Node Template of Node Type “process engine”, and a third Node Template
of Node Type “process model”. The application server Node Type defines properties like the IP address
of an instance of this type, an operation for installing the application server with the corresponding IP
address, and an operation for shutting down an instance of this application server. A constraint in the
Node Template can specify a range of IP addresses available when making a concrete application server
available.

Node templates may include one or more relationships to other node templates in the Topology
Template. Relationships represent the edges in the service topology graph. The node template that
includes the relationship definition is implicitly defined as the source node of the relationship and the
target node is explicitly specified as part of the relationship definition. Each relationship definition refers
to a Relationship Type that defines the semantics and any properties of the relationship. Relationship
Types are defined separately for reuse purposes.

Figure 2.12: Structural elements of a TOSCA service template and their relations [84].

The Figure 2.12 illustrates the major elements of a TOSCA Service Template. Within
a Service Template, a Topology Template defines the structure of a service. This template
consists of Node Templates and Relationship Templates.

The Node Template specifies the required components and their properties, operations
and interfaces. Each Node Template refers to a Node Type that defines the semantics of
the node (e.g., properties, requirements, capabilities, interfaces, etc.).

The Relationship Template describes connectivity between components (Node Tem-
plates) by declaring the direction of the relationship (source and target) and can have
additional parameters. Each Relationship Template refers to a Relationship Type that
defines the semantics relationship (e.g., properties, interfaces, etc.). Node Types and Re-
lationship Types are defined separately for reuse purposes.

Workflows aim to interpret the templates and execute appropriate actions (e.g., create,
terminate) related to the management of the service is lifecycle. They have been defined
as process models and they rely on the Business Process Model and Notation (BPMN),
later explored in Section 2.4.3.

In order to allow automatic deployment or build of services this specification also defines
Artifacts. An artifact represents the content needed to provide an implementation for an
interface operation, that could be an executable (e.g., a script, an executable program), a
configuration file, etc. The content of an artifact depends on its type.

Policies specify operational behavior of the service, such as QoS objectives, perfor-
mance objectives, and security constraints, and allow for closed-loop automation. Further
information about this modeling language can be found in [84].

26 State of the Art

2.4.3 Business Process Model and Notation

BPMN is a global standard maintained by Object Management Group (OMG) for work-
flows and process automation. The main objective is to provide a notation that is intuitive
to business users and developers [85, 86]. Thus, BPMN creates a standardized bridge for
the gap between the business process design and process implementation [86].

This specification provides a graphical notation for specifying business processes in a
Business Process Diagram (BPD), which is based on traditional flowcharting techniques
that are similar to activity diagrams from Unified Modeling Language (UML), tailored for
creating graphical models of business process operations. It also ensures that XML (Exten-
sible Markup Language) languages designed for the execution of business processes, such
as Web Services - Business Process Execution Language (WS-BPEL), can be visualized
with a business-oriented notation [87].

The modeling elements of BPMN are organized into five basic categories, such as Flow
Objects, Data, Connecting Objects, Swimlanes, and Artifacts. These graphical elements
can be consulted in the latest specification of OMG in [88].

In sum, BPMN is widely used in the business process modeling industry and has an
easy-to-use flowchart-like notation that is independent of any particular implementation
environment [85, 86].

2.5 BPM Frameworks

This Section presents two BPM tools for workflow and process automation.

2.5.1 Camunda BPM

Camunda BPM is an open-source, integrable and lightweight Java-based framework, sup-
porting BPMN for workflow and process automation [89]. This framework is dedicated
to Java developers and their typical software development infrastructure while providing
Business-IT-Alignment during process design and runtime using the BPMN 2.0 standard
[90]. The Camunda Consulting Team provided a manual of Camunda Best Practices avail-
able on [91].

2.5.1.1 Architecture Overview

The main components of this platform are written in Java. This framework also provides
a REST API, which allows the non-Java developers to build applications connecting to a
remote process engine. Camunda BPM can be used both as a standalone process engine
server or embedded inside custom Java applications. The deployment of different scenarios
is described in [92]. An overview of Camunda BPM architecture is provided in Figure 2.13
and the main components are described as follows [89]:

2.5 BPM Frameworks 27

Database

Model

File Repository

Modeler

REST

Tasklist

REST

Cockpit Admin

REST

REST / Java API

Engine
(BPMN, CMMN, DMN)

Execute

REST / Java

Custom
Application

Business Analyst /
Developer End User

Operator
(technical/business) Administrator

Figure 2.13: Camunda architecture overview [89].

• Admin: is a Web application for user management (users, groups, permissions and
other configurations);

• Cockpit: is a Web application for process operations and monitoring, which provides
mechanisms of searching, inspecting and repairing for instantiated processes;

• Process Engine: is a Java library responsible for the execution of BPMN 2.0 pro-
cesses, it runs inside the Java Virtual Machine (JVM);

• REST/Java API: allows users or other applications to use the Process Engine from
a remote application or a Java Script application;

• Modeler: is a free desktop application supported by Camunda for modeling BPMN
workflows. It allows the edition of properties for technical executions.

More detailed information about these components can be found in [93].

2.5.1.2 Process Definition

A process definition defines the structure of a process and it uses BPMN 2.0 as its primary
modeling language for modeling process definitions. Camunda BPM provides two BPMN
2.0 references: the Modeling Reference that introduces the fundamentals of BPMN 2.0
with examples [94]; and the Implementation Reference that comprises the implementation
of the individual BPMN 2.0 constructors in Camunda BPM [95].

Camunda BPM allows the deployment of processes to the Process Engine in BPMN 2.0
XML format. The XML files are parsed and transformed into a process definition graph
structure. This graph structure is executed by the Process Engine component.

28 State of the Art

2.5.2 Oracle BPM Suite

The Oracle BPM Suite is a paid software that provides a comprehensive platform with a
single design-time and unified engine for process, case, rules, human tasks, forms, analytics,
and integration. This software provides support for human collaboration and improves
process efficiency and quality by raising utilization and throughput. It increases visibility
into process performance by providing real-time analytics and simplifies compliance by
offering transparent data.

The platform provides seamless round-trip between business and IT tools based on
shared BPMN 2.0 metamodel leading to better business-IT collaboration. It also increases
corporate agility with flexible tools [96]. More information about this software can be
found at [96] and [97].

2.6 Content Delivery Network

Nowadays, video streaming occupies more than half of Internet traffic [98]. There are a
number of factors which contribute to the increased usage and pressure on mobile networks
through the consumption of multimedia content, such as the proliferation of devices like
smartphones or tablets, the wide adoption of social media that enables quick and efficient
sharing of hot topics, the access to various over-the-top media services (e.g., Netflix),
and large-scale events of live streaming or the access to premium content like 8K or for
AR/VR, are driving the need for even greater resource utilization of legacy infrastructure,
cost efficiency, and time-to-market [99, 100]. In this context, traditional CSPs are under
pressure to increase available bandwidth and to maintain competitive QoS levels.

Content Delivery Networks (CDN) have a fundamental role in the delivering of digital
content to end-users and they are widely used by CSPs [100].

A CDN is an overlay network that gives more control of asset delivery while monitor-
ing network load. It contains several servers strategically distributed in various locations,
in order to cache content in close geographical proximity to the end-users, reducing re-
sponse time and network congestion. When a client makes a request for content, the CDN
redirects it to an optimally located mirrored server that should perform transparent and
cost-effective delivery to the end-user. Location is essential for content delivery speed, e.g.,
if the user is far from the server where the content is stored, more time it will take for the
content to reach the user, and this in turn negatively affects user experience [101, 102].

In order to reduce costs and increase elasticity, traditional CSPs have been to em-
brace virtualization and MEC technologies to deploy and utilize virtual Content Delivery
Networks (vCDN) [103, 104].

Taking advantage of virtualization, vCDNs can be dynamically adjusted (shrunk or
grown) to meet customer demand, avoiding performance, quality, reliability and availability
limitations that characterize traditional CDNs [104].

2.7 Summary 29

The main benefits of using a vCDN are the programmability of the CDN components,
like create, remove or change the location of a CDN node, adapting them to new operating
conditions. And also, by enabling isolation of the virtual structures, allowing multiple
instances of CDNs in a multi-provider scenario [104].

ETSI has highlighted vCDN as a major use case for NFV available in [105]. In the
research article [106], an analysis of the “State of the Art, Trends, and Future Roadmap”
in this area is available.

2.7 Summary

This Chapter focused on presenting a global scope about the necessary concepts for a
better understanding of the various subjects covered throughout this Dissertation.

It started with an overview of the fifth-generation of mobile communications, including
its standardization, usage scenarios, requirements, architecture and their key enablers, such
as NFV, SDN, MEC, and Telco Cloud.

Then, the main concepts of orchestration concerning on end-to-end orchestration, NFV-
MANO, and some advances in orchestration mechanisms, like closed-loop control and
PBNM.

Two NSO solutions (ONAP and OSM) were introduced as well as a brief summary of
the open-source NSO implementations.

Following, the major modeling languages, such as Heat Orchestration Template, TOSCA,
and BPMN were described.

Later, were presented two BPM tools for workflow and process automation, both taking
advantage of the BPMN standard.

Finally, considerations over the role of CDN in delivering digital content and the major
advantages of virtualizing these networks were presented.

Chapter 3

Orchestration Solution

In this Chapter, the proposed orchestration solution and the use case scenario are described.
In Section 3.1, the proposed architecture and description of the selected components that
constitute the designed system of the NSO solution are presented. Finally, in Section 3.2,
the closed-loop orchestration scenario, along with the presentation of the vCDN service
and the components that enable the orchestration of this service are described.

3.1 Orchestration Platform

The orchestration platform in use is ONAP, in particular the El-Alto release. This platform,
as mentioned in Section 2.3.1, is focused on the design, creation, orchestration, management
and automation of network and edge computing services for CSP.

The use of ONAP represents numerous advantages, firstly because it is an open-source
platform and also supports ETSI standards that promote interoperability and integra-
tion with other projects. Secondly, it allows for rapid automation and complete lifecycle
management of services, which is critical for 5G and the next-generation networks.

For better understanding, this Section is organized into four subsections:

• Architecture – presents the customized architecture of this platform;

• Selected components – the used components that enable the orchestration;

• Communication – the communication buses that this platform uses;

• Interfaces – the internal and external APIs that promote interoperability and inte-
gration with other projects.

3.1.1 Architecture

This NSO solution must automate the network environment automatically. For this, a
clear division between the Design-time and Run-time environment delineates three main
domains: service creation, orchestration, and maintenance (operations) [73].

31

32 Orchestration Solution

Design-Time Run-Time

ONAP External API / NBI

ONAP Portal

Service
Orchestrator (SO)

O
N

AP
 O

pe
ra

tio
ns

 M
an

ag
er

 (O
O

M
)

VNF Onboarding

Catalog

Service VNF/VF/PNF Design

Workflow Designer

Service Design & Creation
(SDC)

Microservices Bus (MSB) /
Data Movement-as-a-Platform (DMaaP)

Infrastructure
Adaptation

Multi-VIM/Cloud

Virtual Function
Controller (VF-C)

Active & Available
Inventory (AAI)

Infrastructure Network Applications

Managed Environment

Figure 3.1: Architecture of customized orchestration platform.

The presented solution is illustrated in Figure 3.1, which results in the subsequent
ONAP modules from both environments. This is possible due to the fact that ONAP is a
modular and flexible platform that allows customization. This solution only considers the
necessary components and functionalities to enable service orchestration.

3.1.2 Selected Components

The selected components that are part of the proposed architecture are described in the
following subsections.

3.1.2.1 Service Design and Creation

The Service Design and Creation (SDC) component [107] is a visual modeling and design
tool for Design-time activities, such as VNF onboarding, workflows definition, services and
policies creation, data analytic applications onboarding, and models distribution to Run-
time components. It creates internal metadata that describes assets used by all ONAP
components, both at Design-time and Run-time.

This component is catalog-driven, which means all the defined models are stored in a
Catalog, that represents a single source of service data. The centralization of this data and
the modeling of services according to predefined templates allows providers to decrease
their time-to-market for new digital services.

3.1 Orchestration Platform 33

The SDC manages the content of a Catalog, and logical assemblies of selected catalog
items to establish rules, in other words, it defines how and when VNFs are realized in a
target environment. A virtual assembly of specific Catalog items, together with related
workflows and configuration data, defines how the deployment, activation, and lifecycle
management of VNFs are accomplished.

The models defined in SDC describe asset capabilities and how they have to be man-
aged. Inside the SDC Catalog, two levels of assets are managed:

• Resource: it represents a combination of one or more Virtual Function Components
(VFC), along with all the information necessary to instantiate, delete, update and
manage the Resource. A Resource also includes license-related information. There
are three types of Resource:
– Infrastructure, composed by the Cloud resources (e.g., storage, compute);
– Network, constitute network connectivity functions and elements (e.g., a VNF);
– Application, includes all features of a software application (e.g., a load balancer).

• Service: it is an object composed of one or more Resources. Service designers
create Services from Resources, including all of the information needed to instantiate,
update, delete, and manage the Service.

There are four major components in SDC:

• Catalog is the repository for assets at the Resource and Service levels;

• Design Studio is used to create, modify, and add Resource and Service definitions
in the Catalog;

• Certification Studio is used to test new assets at all levels in order to certify them;

• Distribution Studio is used to deploy certified assets.

In addition, the SDC integrates a RESTful Web Services framework to expose a set of APIs
to the outside used by ONAP components and also provides an Integrated Development
Environment (IDE) that is accessible by designers through the ONAP portal. Moreover, it
provides a role-based distinction of users (e.g., Designer, Tester, Governor), later described
in Section 4.2.1.1.

After the conclusion of the service design activities, SDC offers an interface to distribute
the modeled services, TOSCA artifacts and Cloud Service ARchive (CSAR1) files to Active
and Available Inventory (AAI), Service Orchestrator (SO), SDN - Controller (SDN-C)
and other ONAP Run-time components, using Data Movement-as-a-Platform (DMaaP)
notifications.

1The SDC Service CSAR [108] is a package of artifacts, which captures the information associated with
a service defined at Design-time.

34 Orchestration Solution

3.1.2.2 Active and Available Inventory

The AAI module [109] provides real-time views of available Resources and Services and
their relationships. It forms a central registry of active, available, and assigned assets,
maintaining up-to-date views of the multidimensional relationships among these assets,
including their relevance to different components of ONAP.

Since this component is metadata-driven, new Resources and Services can be added
quickly with SDC catalog models. Data stored in its inventory is continuously updated
in real-time, corresponding to the changes made within the Cloud environment, and all
operations are available through a RESTful API.

AAI exploits graph data technology to store relationships between Inventory items.
This allows identifying chains of dependencies between items. It displays relationships
between products and the services composing them, but also between Services and their
Resources. It also shows relationships among different VNF that are chained to realize an
end-to-end service. The collected data can be used during service delivery, impact analysis,
analysis of problems, and many other processes, thanks to providing a reliable snapshot of
the current state of all resources managed by the ONAP platform.

3.1.2.3 Service Orchestrator

The SO component [110] is responsible for orchestration logic, performing real-time actions
on services and automates the execution of tasks, rules and policies needed to control these
services. It performs orchestration at a high-level, thanks to its end-to-end view of the
network infrastructure.

To fulfill the required tasks, it interacts with four controllers, which are the Virtual
Function Controller (VF-C), the Multi-VIM/Cloud, the Application Controller (APP-C)
and the SDN Controller (SDNC). In addition, it communicates with SDC and AAI to
obtain topologies, resource models and configurations.

The SO is invoked through events by other ONAP components or API calls from BSS
applications or manually through Virtual Instantiation Deployment (VID2). It also takes
homing3 decisions and manages rollbacks operations in case errors occur [70].

The functional architecture of SO, illustrated in Figure 3.2, consists of the following
sub-components:

• API Handler: handles service-level and infrastructure (VNF & network) for incom-
ing requests through a RESTful interface to northbound clients;

• SDC Distribution Client: receives updated service models from SDC and populate
Catalog DB;

2VID [111] enables users to request for the creation or deletion of services and their components.
3Homing is intended as the process of determining the physical or virtual resources in which workloads

will be placed.

3.1 Orchestration Platform 35

API Handler

Request Handlers

BPEL Execution Engine (Camunda)

REST

REST
REST

REST

Service Orchestrator

Resource/
Controller
Adapters

VNF Resource
Adapter Controller Adapter VNFM Adapter

TOSCA
Models

+
HEAT

Data Stores

Multi-Cloud
(OpenStack)

KEYSTONE/ HEAT /
REST

APPC

VFC

SDNC

External VNFM

REST

ONAP Optimization
Framework (OOF)

Active and Available
Inventory (AAI)AAI Util

Homing

ONAP Portal OSS/BSS

Service Recipe

Task Task

Task

REST REST

Camunda
DB

Service Design and
Creation (SDC)

Service
Models

HEAT
Teamplates

Catalog
DB

Request
DBSD

C
 D

is
tr

ib
ut

io
n

C
lie

nt

Figure 3.2: ONAP Service Orchestrator functional architecture (adapted from [112]).

• Data Stores: consists of three databases:
– Catalog DB: store services and resource models, recipes, and Heat templates;
– Request DB: tracks open and completed requests;
– Camunda DB: maintain state for BPMN flows and supports multiple active engines.

• BPEL Execution Engine (Camunda): contains all business logic of service order
execution and interact with AAI, SDNC, Data Stores, etc.;

• Resource/Controller Adapters: provides interfaces that interact with ONAP
components (SDNC, VF-C, Data Stores) or external components (OpenStack, etc.);

• SO Monitoring: service to monitor BPMN workflows execution status.

3.1.2.4 Controllers

The Resource/Controller Adapters are the primary players in ongoing service manage-
ment and they perform activities, such as service configuration and management, service
migration and scaling, control loop actions, etc. [70].

The controllers act under the direction of SO or independently as triggered by events.
As previously mentioned in subsection 3.1.2.3, SO interacts with four controllers, each
corresponding to a different control domain. In this proposed architecture, only two are
considered the VF-C and the Multi-VIM/Cloud.

The VF-C [113] is composed of two components: the NFVO (NFV Orchestrator) and
the Generic VNF Manager (GVNFM), and its architecture is presented in [114].

36 Orchestration Solution

VF-C provides reference implementation of NFVO in ETSI NFV-MANO architecture
and information model as a reference. It implements Fault-management, Configuration,
Accounting, Performance, and Security (FCAPS) of VNF and Network Services (NS), and
lifecycle management (e.g., instantiate, scale, heal, terminate, etc.), following the ETSI
NFV-MANO specifications.

The Multi-VIM/Cloud [115] handles all interactions between ONAP and all underlying
VIM or Cloud platforms. It decouples the ONAP platform from the subjacent Cloud
infrastructure, by providing a Cloud mediation layer supporting multiple infrastructures,
e.g., OpenStack, Microsoft Azure, Kubernetes, VMware, and so on, and network backends
to effectively prevent vendor lock-in.

3.1.3 Communication

To allow the exchange of information between ONAP components, the following ONAP
communication buses are now presented.

3.1.3.1 Microservices Bus

The Microservices Bus (MSB) is a project [116] from ONAP that provides a resilient, reli-
able, and scalable communication and governance infrastructure. The main infrastructure
functionalities to support ONAP microservices architecture include service discovery and
registration, service routing and load balancing, timeout and retry, requests tracing and
metrics collecting, etc. It also provides a service portal and service requests (e.g., logging,
monitoring and tracing mechanism, etc.) to manage the RESTful APIs.

3.1.3.2 Data Movement-as-a-Platform

The DMaaP component [117] is another bus that allows communication between the plat-
form components. It provides a premier platform for high performing and cost-effective
data movement services that transports and processes data from any source to any desti-
nation. It respects the quality, security, and concurrency requirements needed to fulfill the
business and customer requests, and using the appropriate format.

3.1.4 Interfaces

This subsection aims to provide an overview of ONAP APIs that promotes interoperability.

3.1.4.1 Northbound interface

ONAP embraces an architecture with well-defined APIs both within internal and across
complementary projects and applications. This enables CSP and users to quickly integrate
ONAP with their existing systems.

3.1 Orchestration Platform 37

Figure 3.3: ONAP Northbound Interface architecture [119].

There are two categories of APIs in the ONAP project: the ONAP Internal API that
are interfaces exposed by individual ONAP modules for exchanging information with other
modules; and the ONAP External API that provides an abstracted view of the ONAP
capabilities [118]. These External APIs are based on two SDO: TM Forum (TMF) and
Metro Ethernet Forum (MEF4) [119].

The ONAP External API Framework project [120] also named ONAP Northbound
Interface (NBI), brings to ONAP a set of REST APIs that can be used by external systems,
such as OSS/BSS applications, to interact with other ONAP components, hiding all the
complexity of these components.

A global view on ONAP NBI architecture is depicted in Figure 3.3, showing its in-
tegration with ONAP components and the available API operations. It provides access
to different information stored in ONAP platform components, including SDC, AAI and
SO, corresponding respectively to API REST specification TMF633 [121] (ServiceCatalog
API), TMF638 [122] (ServiceInventory API) and TMF641 [123] (ServiceOrder API). And
HUB API, also based on TMF641, is a mechanism that is implemented by subscribing to
DMaaP topics and listening for events on those topics.

3.1.4.2 SouthBound Interface

For interoperability purposes, there is a need in ONAP community to highlight the impor-
tance of aligning the platform with industry standards, i.e., the ETSI NFV-MANO [124].

As explored in Section 2.2.2, the ETSI NFV-MANO framework consists of three main
functional blocks: VIM, VNFM, and NFVO.

4MEF is a telecommunications SDO focused on Carrier Ethernet and orchestration.

38 Orchestration Solution

Figure 3.4: ONAP El Alto and ETSI NFV-MANO alignment (adapted from [125]).

ONAP is in line with this framework, as depicted in Figure 3.4, for building blocks,
features, and interfaces [118]. As part of this alignment, ONAP supports ETSI standards
for packaging, operations, and monitoring for managing VNF, Physical Network Functions
(PNF) and NS [125].

From the CSP point of view, it is recommended to use standard-compliant orchestration
applications and these tools need to be compatible with a subset of API and functionalities.
The main interfaces for this work are highlighted below:

• ETSI NFV-SOL 005 Adapter [126] (Os-Ma-nfvo) used for virtual NS Lifecycle man-
agement interface, NSD Management interface, NS Performance Management inter-
face, NS Fault Management interface and VNF Package Management interface;

• ETSI NFV-SOL 003 Adapter [127] (Or-Vnfm) used for VNF Lifecycle Management;

• ETSI NFV-SOL 002 Adapter [128] (Ve-Vnfm) used for Element Manager (EM5)
triggered scenarios (lifecycle management, Fault, Performance, Configuration).

Furthermore, ONAP community has defined the proposals ETSI-alignment architecture,
requirements and road map for future releases available in [125].

5EM is a component responsible for the network management functions FCAPS of a running VNF.

3.2 5G Service: vCDN 39

3.2 5G Service: vCDN

This Section intends to demonstrate the role of orchestration using a vCDN service in the
scope of a closed-loop scenario to solve a network problem. First, it presents the proposed
scenario, describing the resolution operation for this problem. Then, the service used to
validate the orchestration platform is described, focusing on the functional architecture of
the service. Finally, the orchestration role in this scenario is highlighted, presenting the
components that realize the integration and interaction with this service.

3.2.1 Closed-loop Orchestration Scenario

With the aim of validating the proposed orchestration solution, a vCDN service was used
in a scenario of congestion on a network link in a 5G network context, however, the 5G
components are out of the scope as illustrated in Figure 3.5.

The closed-loop orchestration methodology emerged as a solution. As previously ex-
plored in Section 2.2.3.1, this methodology takes advantage of the OODA loop, making
network management more autonomous involving monitoring, data analysis, decision mak-
ing and orchestration.

In this context, the closed-loop orchestration is mainly formed by three components:
Monitoring and Analytics, Policy Framework and SO (ONAP).

This scenario comprises a vCDN infrastructure to deliver multimedia content to the
end-users. The vCDN infrastructure is composed of the Core Network, that comprehends
all MANO operations of this service, and by vCDN Edge Nodes that are responsible for
the delivery of multimedia content.

Policy
Framework

Service
Orchestrator

NFVO

Monitoring &
Analytics

Core Network

Link 1
(Congested)

Link 2

Edge Node 2

Edge Node 1

vCDN Core

Closed-Loop
Orchestration

vCDN Node

vCDN Node

vCDN
Node

Figure 3.5: Closed-loop orchestration scenario high-level overview.

40 Orchestration Solution

This scenario starts when there is a notification signaling the occurrence of congestion
in the network link. As a precondition, the 5G network must be dimensioned so that
resources can be scaled dynamically. For a better understanding and taking into account
Figure 3.5, the main events are described as follows:

1. A congestion analysis system notifies that a congestion condition has been detected
on Link 1, as depicted in red color;

2. The notification is received by the Policy Framework that evaluates and instructs the
SO to deploy a new vCDN node on Edge Node 1, as represented in the green line;

3. The SO obtains the necessary information and realizes validations about the request;

4. The SO orders the deployment of a vCDN node to the VF-C, in particular the NFVO;

5. The NFVO orders the deployment of a vCDN node to the MEC on Edge Node 1;

6. The MEC notifies the creation of the requested node back to the NFVO;

7. The NFVO orders MEC to configure traffic redirect so that traffic flows through the
vCDN node;

8. The NFVO acknowledges the creation of a vCDN node to the SO;

9. The SO acknowledges the deployment of a new vCDN node on Edge Node 1.

As a final result, the instantiation of the network elements involved has succeeded and the
congestion situation was solved.

3.2.2 vCDN Service

As stated in Section 2.6, a vCDN service takes advantage of NFV and MEC technologies
to cache content closer to the end-users, reducing response time and network congestion.
The main goal is to improve and optimize the provisioning of multimedia content to the
users, by reducing the load on the transport network and minimize any possible failures.
The vCDN service in use also complies with the ETSI NFV architecture, which enables
integration with ONAP.

vCDN Core NetworkvCDN Edge Node

Content
Placement
Planner

Backhaul
Network

Data
Sources

Monitoring
Agent

User
Location
Predictor

Enforcer

Streamer

Cache

Figure 3.6: Functional architecture of vCDN service.

3.2 5G Service: vCDN 41

From a logical point of view, the functional architecture of vCDN service is depicted in
Figure 3.6 and its components of Core and Edge are described in the following subsections.

3.2.2.1 vCDN Core

The vCDN Core includes the following components:

• Monitoring Agent: comprises mechanisms for integrating monitoring sources (e.g.,
User, Network), storing it on the available databases;

• Data Sources: are a set of databases responsible for storing relevant information
in the operations of the vCDN service;

• User Location Predictor (ULP): embeds various algorithms for predicting user
location and/or path based on User Equipment (UE) and MEC location services;

• Content Placement Planner (CPP): realizes predictive caching and buffering.
It uses analytical capabilities to provide recommendations to the vCDN Enforcer
regarding the target caches when the content should be replicated;

• Enforcer: realizes the logic of the vCDN platform, by responding to northbound
API requests, providing enforcement of operations recommended by the CPP, and
registering in formations in the Data Sources.

3.2.2.2 vCDN Node

The vCDN Node is located in the network Edge, which means that is a component of the
vCDN system that is logically distributed in the network to provide the content delivery
optimizations. This component comprises two functions. The Streamer function that is
responsible for the delivery of digital content to the end-users. And the Cache function
that temporarily stores the received content from the vCDN Core.

3.2.3 Scale-Out Operation

As previously explored in Section 2.6, a vCDN service can be dynamically adjusted to meet
customer demand, avoiding performance, quality, reliability and availability limitations.

In this context, the main focus of this Dissertation aims to explore the ability to scale-
out a vCDN service in the closed-loop orchestration scenario as previously presented in
Section 3.2.1. This ability is provided by NFV to scale, in a horizontal manner, composable
resources instances (compute, storage, network) in order to match dynamic network traffic
levels.

In the case of the vCDN service, which includes the Core part (mainly management
and control components of the service) and the vCDN Node (where the video streams are
located and transmitted to end-users), consists of adding additional VMs (horizontal scale)
for the vCDN Edge Node where they are needed.

42 Orchestration Solution

Since this vCDN service aims at providing ETSI NFV alignment, it would benefit from
its integration into an orchestrated Cloud environment that supports the realization of
these capabilities. The orchestration role of the principal ONAP components and their
interactions with the vCDN service is described as follows:

• NBI: allows the interaction with the ONAP components in a standardized and trans-
parent way. External OSS/BSS applications are able to order for service instantia-
tion, by sending a ServiceOrder API request (later explored in Section 4.3). It also
allows to query the ONAP components, like consulting information stored in AAI or
list of available models in SDC;

• SO: this component, as previously explored in Section 3.1.2.3, performs real-time
service orchestration at a high-level, thanks to its end-to-end view of the network
infrastructure. This component plays an important role in the orchestration logic.
In particular, BPEL Execution Engine that contains all business logic of service
order execution and interacts with other ONAP components, to perform the scale-
out operation (creation and instantiation) of the vCDN Edge Nodes and also their
termination (in case of failure);

• VF-C: as stated in Section 3.1.2.4, VF-C includes two components NFVO and
GVNFM. Since ONAP and vCDN service are in line with ETSI NFV-MANO ref-
erence architecture, this controller realizes the integration with this service. On
one hand, it takes advantage of NFV-MANO capabilities by providing the inter-
face Ve-Vnfm-em (SOL002 Adapter API) to the vCDN service through the GVNFM
component, as highlighted in yellow color in Figure 3.4 of Section 3.1.4.2. On the
other hand, GVNFM provides the interface Or-Vnfm (SOL003 Adapter API) and
cooperates with the NFVO component, to take part in fulfilling the lifecycle man-
agement and FCAPS management of NS and VNFs. For last, the NFVO component
communicates with SO via SOL005 Adapter API;

• Multi-VIM/Cloud: as a VNF resource adapter, allows the communication with
the lower-level infrastructure management layer, in this case, with the OpenStack
platform for the creation of new vCDN edge nodes.

3.3 Summary 43

3.3 Summary

This Chapter introduced the proposed orchestration solution and the use case scenario.
The orchestration platform architecture capable of enabling end-to-end service orches-

tration was presented, along with the description of the main components and interfaces
that leverages interoperability with external systems.

For the validation of this platform, a vCDN service was used and integrated, in a sce-
nario of congestion of a network link. To solve this problem, the closed-loop orchestration
methodology was presented, by highlighting the importance and the role of orchestration in
this context. Last, the functional architecture of this service in the scope of the orchestrator
designer was described.

Chapter 4

Implementation

This Chapter focus on the description of the implemented solution. It starts at Section 4.1,
by describing the technologies that leverage the ONAP infrastructure deployment with the
considered testbed. In Section 4.2 the vCDN service modeling is described in detail. Then,
in Section 4.3, considerations on ONAP NBI service instantiation requests are provided
along with an example request. Lastly, Section 4.4, describes the main BPMN elements
used to orchestrate the vCDN service, and the main features that the developed workflow
comprise are highlighted in detail.

4.1 Infrastructure Deployment

ONAP is a Cloud-native application that consists of several services. Consequently, it
requires sophisticated initial deployment as well as post-deployment management.

This Section provides an overview of the necessary concepts and technologies that
ONAP utilizes in its deployment. Firstly, it introduces the ONAP Operations Manager
(OOM) project and then the required software tools. Lastly, the testbed environment that
this Dissertation uses is described.

4.1.1 ONAP Operations Manager

The OOM [129] is responsible for the lifecycle management and monitoring activities of
ONAP components, by taking advantage of the Kubernetes container orchestrator to en-
sure CPU efficiency and platform deployment. OOM ensures that ONAP is easily deploy-
able and maintainable throughout its lifecycle while using hardware resources efficiently.
Additionally, it improves the ONAP platform by providing resilience enhancements and
scalability to the components it manages.

In summary, Figure 4.1 aims to provide a high-level view of OOM that takes advantage
of several Kubernetes built-in features, which consists of the following functionalities:

• Deploy: with built-in component dependency management;

45

46 Implementation

SO
Service

...

SO POD#1

Deploy
Configure
Monitor
Heal
Scale
Upgrade
Delete

ONAP (Application)

A&AI
Service

...

A&AI POD#1

VF-C
Service

...

VF-C POD#1

MSB
Service

...

MSB POD#1

SDC
Service

...

SDC POD#1

...

...

... POD#1

Kubernetes

ONAP Operations
Manager

Figure 4.1: Managing ONAP with Kubernetes (adapted from [130]).

• Configure: unified configuration across all ONAP components;

• Monitor: real-time health monitoring mechanisms of its components;

• Heal: failed ONAP components are restarted automatically;

• Clustering and Scaling: cluster1 ONAP services to enable continuous scaling;

• Upgrade: change out containers or configuration with little or no service impact;

• Delete: cleanup individual containers or entire deployments.

Furthermore, it supports a wide variety of private and public Cloud infrastructures, to suit
operators’ individual requirements.

4.1.2 Required Tools

The main benefits of using OOM to deliver ONAP are lifecycle management, deployment
speed, hardware efficiency, and Cloud provider flexibility. In order to achieve these benefits,
ONAP follows microservices-oriented architecture to be scalable, reliable, and maintain-
able. This approach aims to break large software projects into smaller, independent, and
loosely coupled modules, which individual modules are responsible for highly defined and
discrete tasks, and communicate with other modules through accessible APIs [131].

The recommended ONAP deployment is based on Kubernetes, Docker containers and
Helm installer.

1Kubernetes cluster is a set of node machines for running containerized applications.

4.2 Service Modeling 47

4.1.3 Testbed Configuration

After understanding the necessary software tools, the total minimum hardware configura-
tion required by a full deployment of the ONAP El Alto release was set to 224 Gigabytes
(GB) of Random Access Memory (RAM), 160 GB of Hard Disk (HD) and 112 virtual
Central Processing Unit (vCPU), as stated in [132].

In order to support the deployment of the necessary ONAP components proposed
in Section 3.1, the configured testbed comprises the resources presented in Table 4.1.
The installation of ONAP was possible by using the OOM on a Kubernetes cluster in an
OpenStack environment. In this case, ONAP integration with OpenStack was used as a
private Cloud to manage the infrastructure.

Table 4.1: Testbed configuration for the deployment of ONAP.

Virtual Machines
Resources

vCPU RAM (GB) HD (GB) OS

Kubernetes VM - Master 3 4 50 Ubuntu 18.04
Kubernetes VM - Worker1 6 34 80 Ubuntu 18.04
Kubernetes VM - Worker2 5 34 80 Ubuntu 18.04
Kubernetes VM - Worker3 5 34 80 Ubuntu 18.04

Kubernetes VMs Total 19 106 290 —

Once the VMs are available, the required software must be installed with the correct
versions for the desired ONAP release. The installation steps are available in the “OOM
Quick Start Guide” in [133]. After the successful deployment of a Kubernetes cluster, the
OOM is ready to deploy and manage ONAP.

4.2 Service Modeling

This Section comprehends the necessary understanding of service modeling about vCDN
service. Firstly, describes the main steps of the Design Process, which comprises the defi-
nition and distribution of service models to the components of the Run-time environment.
Secondly, focus on the Service Design of the vCDN Service, by explaining is Design Process.
For last, the orchestration plan for this service is presented.

4.2.1 Design-time Activities

As previously mentioned in Section 2.3.1, ONAP is composed of Design-time and Run-time
environments. The Design-time framework is a comprehensive development environment
with tools, techniques, and repositories for describing services, resources, and products.

48 Implementation

First, this phase involves the definition of additional data structures, templates and soft-
ware modules so that the service is properly distributed.

It is important to note that ONAP is an open-source framework which means that all
documentation and code are available. This allows service providers to use the standard
features provided by ONAP or customize the platform to achieve their goals.

The Design Process comprises different phases of onboarding, design, and distribution,
which requires input from different users with multiple roles.

4.2.1.1 Users Management

To access the different ONAP modules, user management techniques are necessary to make
the whole process more secure and organized from the administrator point of view, since
each type of user can only perform a set of defined actions [134]. The user roles are the
following:

• Administrator: triggers the actions to ultimately deploy virtual function module;

• Designer: is responsible for the design and creation of all the resources;

• Tester: is in charge of running the tests for the designed services and approving the
ones in which the tests were successful;

• Governor: approves or denies the designs created by the Designer after they have
been verified by the Tester;

• Operator: distributes the service throughout the platform.

4.2.1.2 Design Process

The Design Process aims at the creation of all the required models to instantiate and
manage the services. This process is performed in a sequential and logical number of
steps, each of which is assigned to a specific user role.

It follows the logic implemented in Figure 4.2, that demonstrates the different steps
and tools involved in the Onboarding, Creation and Distribution phases. These steps are
described as follows [135]:

1. Resource Onboarding: the Designer is responsible for Resource Onboarding. It
onboards the Virtual Function (VF) and VNF, and also the corresponding models and
artifacts required for the description of the software function, implemented in TOSCA
templates, and for the operations on it. This includes the creation and onboarding
of a License Model and of Vendor Software Products (VSP), which correspond to a
VF or VNF.

4.2 Service Modeling 49

Figure 4.2: Design process in ONAP [135].

2. VF/VNF Creation: the VF Creation utilizes the VSP as building blocks.

3. VF Testing: in the Tester, the VF Testing validates the generated VF is compliance
for use and adds it to the VF catalog.

4. Service Design: the service model and artifacts for orchestration are defined and
onboarded. This step comprises the Composition of the service by adding resources
and relationships among VFs, VNFs, or other Services, as well as the addition of
service level artifacts. All the information characterizing the service is compressed
in a TOSCA artifact and CSAR package file.

5. Service Testing: it is at this point that the service is tested and certified. If the
tests were successful, then it is sent to the Governor for approval.

6. Service Approval: the Governor approves the designs and adds it to the Catalog.

7. Service Distribution: at this step the service is ready to be distributed to the
Run-time environment. The Operator user triggers a distribution operation over the
service to the target ONAP components, by disseminating the CSAR file.

4.2.2 vCDN Service Design

The Design Process of the vCDN service (Core and Edge elements) follows the same
approach described in Section 4.2.1.2. However, before the onboarding operations can be
carried out, the vCDN service must be modeled in accordance with TOSCA templates.

The modeling activities here considered are only performed in the vCDN Node com-
ponent for two reasons. On one hand, this component was the only one on which the
orchestrator would operate in the implementation work. On the other hand, the remain-
ing vCDN components of vCDN Core Network were already deployed in the considered
orchestration target testbed of OpenStack, later described in Section 6.1.2.

50 Implementation

The Resource Onboarding operation was already defined by describing the vCDN Node
component, which is composed of two VMs, one for the Streamer function and another
for the Cache function. This onboarding process takes place at the ONAP level, defining
these two separate modules of the VNF Node as VF Modules through the Graphical User
Interface (GUI) of SDC component, and at the TOSCA template level by describing the
parameters and resources of this VMs.

After the VF Creation, which comprised the creation of the VF “vcdn_node_streamer”
and the VF “vcdn_node_storage”, the Service Design step takes place including the Service
Composition of the NS “vcdn_node_v7” through the GUI of SDC component, as illustrated
in Figure 4.3, by adding the created VFs modules to this service.

V2.0 WAITING FOR DISTRIBUTION Approve Reject 80Elements

Search...

GENERIC

NETWORK CONNECTIVITY

CONFIGURATION

NETWORK L4+

GROUPS

POLICIES

Service Flows: ⚊ Hide all ⚊

...
 vcdn_node_storage 0

vcdn_node_storage

Type: RESOURCE

Resource Type: VF

Version:

Category: Network L4+

Sub Category: Common Network Resour…

Creation Date: 07/24/2020

Author: Carlos Santana

Vendor Name: Altran

Vendor Release: 1.0

Vendor Model Number:

Contact ID: cs0008

Resource Customization UUID:
03c3dea8-9f71-4193-b663-50617ba7b6b8

Description: vcdn node storage

GENERAL INFO

7.0

ADDITIONAL INFORMATION

TAGS

SDC HOME SERVICE: vcdn_node_v7 Compositionv.1.5.3

Figure 4.3: Composition of vCDN node service in SDC.

At this moment, the service definition is complete. Then, the service follows the steps of
service testing, approval and distribution, where the TOSCA artifacts and CSAR file will be
disseminated using DMaaP notifications to the components of the Run-time environment.
When a consumer application deploys a service artifact it immediately publishes a status
notification. In this way, the SDC knows the state of the distribution between the different
components.

4.2.3 vCDN Node Service Orchestration

As mentioned before in Section 3.2.3, the orchestration logic is implemented by the SO.
This component provides to the developers several workflows to perform management and
lifecycle activities.

In this context, the main component of SO that this Dissertation focus is on BPEL
Execution Engine, in particular the Camunda BPM, already explored in Section 2.5.1, that
allows the design and the execution of workflows.

4.3 Service Instantiation via ONAP NBI 51

This BPM tool enables the integration with ONAP by exposing a REST API interface
and the major components are here highlighted:

• Cockpit: is a Web application for operation and monitoring of processes. Used
with ONAP, it allows the management of workflows and its fine adjustment of the
instantiated processes;

• Tasklist: is also a Web application that allows the inspection of the workflow tasks.
It allows to and maintains navigate to task forms in order to work on the tasks and
provide data input;

• Process Engine: is responsible for the execution of the BPMN workflows;

• Modeler: is the design application where BPMN workflows are modeled. It is in
this component that flows are drawn and the orchestration logic is defined.

The designed solution aims at supporting two essential orchestration functionalities.
The first, at the scale-out of the vCDN service, that in practical way consists of the creation
and instantiation of a new vCDN Node, in case of successful operation. The second, at the
handle of any possible error/failure that may occur during the operation execution, which
comprises the necessary operations of termination or rollback.

The developed BPMN workflow is composed of sub-workflows and Groovy script tasks,
capable to orchestrate the vCDN service including its lifecycle operations. It is presented
in detail in Chapter 5, with the main macro-tasks performed identified as follows:

• Handle the scale-out request in the ONAP NBI;

• Perform the necessary validations over the request;

• Collect the necessary information about the service and available resources;

• Interacts with VF-C component to execute the scale-out operations and tracks is
status;

• Concludes the workflow by informing the API Handler and ONAP NBI about the
orchestration status.

After the development of the designed workflow, it is necessary to associate the workflow
with the resource model in the Catalog DB of SO. When this association is completed, the
API Handler is able to trigger its execution when a ServiceOrder API request is created.

4.3 Service Instantiation via ONAP NBI

As previously explored in Section 3.1.4.1, ONAP NBI provides an abstracted view of ONAP
capabilities through the use of a TM Forum standardized API.

52 Implementation

In this context, different methods of service instantiation are provided by ONAP. This
Dissertation takes advantage of the TMF641 [123] specification (ServiceOrder API) for
Service Orders management to perform service instantiation via ONAP NBI [136]. Through
this method, the service instantiation request is converted by NBI to SO.

The ServiceOrder API, provides all the methods that allow to retrieve (GET), create
(POST), modify (PUT), and delete (DELETE) Service Orders. An example of POST
operation request body to create new service order in NBI is provided in Listing 4.1,
according to the ServiceOrder API documentation [119].

1 {

2 "externalId": "Order_0001",

3 "priority": "1",

4 "description": "Altran Service E2E NBI ScaleOut",

5 "category": "Consumer",

6 "requestedStartDate": "",

7 "requestedCompletionDate": "",

8 "relatedParty": [

9 {

10 "id": "Altran",

11 "role": "ONAPcustomer",

12 "name": "Altran"

13 }

14],

15 "orderItem": [

16 {

17 "id": "1",

18 "action": "add",

19 "service": {

20 "name": "vcdn_node_service_0001",

21 "serviceState": "active",

22 "serviceSpecification": {

23 "id": "ae606401-734e-405d-b601-fb726131e8d2"

24 }

25 }

26 }

27]

28 }

Listing 4.1: Request body of ServiceOrder API.

In order to request service instance creation, the action specified for that orderItem
must be “add” (a new service will be created), as shown in line 18, and the service model
on which this service is based is identified by the “id” field presented in line 23, which
corresponds to the “modelUUID” stored in SDC and used by the SO component in order
to link the service to a specific workflow. In response to this request, the user will obtain
the “serviceOrderId” value, which allows checking the service order status (completed or
failed).

4.4 Workflow Elements 53

4.4 Workflow Elements

As stated in Section 3.1.2.3, the main components of SO are the BPEL Execution En-
gine (Camunda), the API Handler, the SDC Distribution Client, the Data Stores and the
Resource/Controller Adapters provided to external ONAP components.

To allow the implementation of the desired vCDN orchestration operation, the focus
turned to the Camunda BPM Engine, as this is the component that will execute the logic
of the desired orchestration plans. Within ONAP, SO takes advantage of the Camunda
BPM framework that is used for the execution of process instances.

This Section aims to provide the main workflow techniques used in this work. As
explored in Section 2.5.1, Camunda BPM is an open-source framework, supporting BPMN
for workflow and process automation. The Camunda Modeler provides a GUI for the
creation and definition of the BPMN workflows which are executed in the Process Engine
component. This framework is compliant with the BPMN 2.0 standard and, as such,
defines similar BPMN modeling elements, such as Events, Activities and Gateways. The
following subsections present a brief explanation of the used BPMN modeling elements.

4.4.1 Events

An Event is some action that occurs during the course of a Process. These Events affect
the flow of the model and usually have a cause (trigger) or an impact (result). Events are
represented by the geometric form of circles with open centers to allow internal markers to
differentiate different triggers or results. There are three types of Events, based on when
they affect the flow:

• Start Event: indicates where a particular process begins, such as receiving an order.

• Intermediate Event: occurs between a Start Event and an End Event. They will
affect the flow of the Process, but will not start or (directly) terminate the Process.
There are two main event categories: Catching and Throwing events. On one hand,
when a process execution arrives at the event, the Catching Events will wait for a
trigger to happen. On the other hand, the Throwing Events when a process execution
arrives at the event, a trigger is fired. Examples of an Intermediate Event that uses
Catch and Throw events are: Link Events for connecting two sections of a Process to
avoid long Sequence Flow lines; or an Error Event, later described in Section 4.4.4.1.

• End Event: indicates the location where a particular process finishes, such as com-
pleting an order.

The main events that this work uses are depicted in Figure 4.4, with the Start, Inter-
mediate (link events), and End events.

54 Implementation

Start
Event

End
Event

Intermediate
Event

Intermediate
Catch Event

Intermediate
Throw Event

Sequence Flow

Figure 4.4: Events types.

These events are connected using Sequence Flow, which is used to connect Events,
Activities, and Gateways with the goal of determining the order in which the flow objects
are executed within the process.

4.4.2 Activities

Activities represent units of tasks that require a given amount of time to be completed.
Similar to Events, Activities have multiple types. The more common types of Activities
that are a part of a Process Model are Task and Sub-Process, which are represented by
rounded-corners rectangles.

Tasks allow for the modeling of the actual work that is being performed in the process.
Tasks can be of multiple types, depending on the way they are executed. The type of task
is denoted by a small symbol in the upper left part of the rectangle. The types of Tasks
and Sub-Process that this work uses are described below:

• Script Task: is an automated activity that runs an embedded script, its BPMN
symbol is depicted in Figure 4.5a. When a process execution arrives at the Script
Task, the corresponding script is executed. In this work, the developed scripts use
Groovy as a scripting language. In order to handle the response body (payload) from
API requests into a process variable of workflow, a JsonSlurper object was used to
fetch the necessary properties of the JSON output by parsing it to text;

• Service Task: is used to invoke services, such as HTTP request. In this work,
this type of task, depicted in Figure 4.5b, was used by taking advantage of the
implementation of a connector, in particular the http-connector for the definition of
inputs (URL, Method, Headers) and outputs parameters (HTTP response code and
response payload);

• Sub-Process: is used to call another BPMN workflow and is represented with a
“plus” sign in the lower center of the shape as shown in Figure 4.5c. They allow
to Map the input variables of the main process, in order to send to the sub-process
that consists of another BPMN workflow. Then, when the sub-process is finished, it

4.4 Workflow Elements 55

returns to the main process and also allows to Map the output variables and continue
the normal behavior of the main flow.

Script Task

(a) Script Task.

Service Task

(b) Service Task.

Sub-Process

(c) Sub-Process.

Figure 4.5: Activities types.

4.4.3 Gateway

A Gateway is used to control the divergence and convergence of Sequence Flow in a process.
Thus, it will determine branching, forking, merging, and joining of paths. Internal markers
will indicate the type of behavior control. They are commonly used when the Activities
and the Events in a Process Model are not executed sequentially, and the path of the
Sequence Flow needs to be controlled.

Service Task

Script Task

Script Task

Exclusive
Gateway

condition #1

condition #2

Figure 4.6: Exclusive gateway.

This work used Exclusive Gateways (an example is depicted in Figure 4.6), which are
responsible for selecting one path out of multiple alternatives, based on the implemented
condition.

4.4.4 Error Handling

In the developed workflow it was necessary to find error handling strategies, in order to
handle any possible error, like for example an unavailable service, by catching that error
event and process an error message. In this context, Error Events and mechanisms of retry
were implemented.

56 Implementation

4.4.4.1 Error Event

An Error Event is used to signal the error, i.e., they are events that are triggered by a
defined error, based upon an Intermediate Event attached to the boundary of an Activity
that occurs during the performance of the Process. An Error Catch Event is responsible for
catching an error and is represented with a white lightning symbol, while an Error Throw
Event is represented by a black lightning symbol and is in charge of trigger an error, as
depicted in Figure 4.7.

Error
Throw Event

Error
Catch Event

Exclusive
Gateway

Figure 4.7: Error event.

4.4.4.2 Retry Activity

Camunda provides a retry time cycle mechanism that allows for the configuration of how
often a job is retried and how long the engine should wait before trying to execute a
job again. This configuration follows the International Organization for Standardization
(ISO2) 8601 standard for repeating time intervals. An example of this configuration is
depicted in Figure 4.8, by using “R3/PT5S”, which means that the maximum number of
retries is 3 (R3) and the delay of retry is 5 seconds (PT5S).

Figure 4.8: Retry mechanism.

2ISO is an international standard-setting body composed of representatives from various national SDO.

4.5 Summary 57

Another option available is to avoid static interval by configuring the list of retry
intervals separated by commas, like e.g. “PT5S,PT20S,PT40S”. In this way, it will retry 3
times and the behavior for this example would be the following:

• Job fails for the first time and will be retried in 5 seconds (PT5S);

• Job fails for the second time and will be retried in 20 seconds (PT20S);

• Job fails for the third time and will be retried in 40 seconds (PT40S).

Furthermore, as shown in Figure 4.8, this mechanism was implemented with an Interme-
diate Error Events (Catch and Throw), which allows error handling after exhausting the
number of attempts.

4.5 Summary

This Chapter presented the various stages of the implementation of this work, from the
deployment of the NSO solution to the design and orchestration of the vCDN service. And
also a detailed explanation of the BPMN elements used.

The testbed environment was described along with the required tools for the deploy-
ment and management of ONAP to enable service assurance and reliability. Then, the
modeling steps at the Design-time of the vCDN service was presented. As well as the
design application that allows for the drawn and definition of the orchestration logic.

Following the presentation of the used method to perform service instantiation along
with an example request for the execution of the workflow.

Last, the BPMN elements used in this work were covered, which include Events, Activ-
ities, Gateway, and Error Handling mechanisms, related to the Operation Design presented
in the next Chapter.

Chapter 5

Workflow Deployment

This Chapter addresses the operation design by presenting the adopted methodology to
orchestrate the proposed Use Case scenario and highlights the activities that perform the
scale-out operation of the vCDN service.

5.1 Process Methodology

In order to handle the orchestration challenges of a vCDN service, presented and described
in the previous Chapter, a three stages methodology was adopted. Each stage addresses a
different level in the operation of the service:

1. Enrichment: comprehends the validation and preprocess of the service instantiation
request to obtain the necessary information to perform the operation of scale-out;

2. Execution: identifies the necessary controllers that will interact with the infrastruc-
ture, resources and services to execute specific operations;

3. Conclusion: concludes the workflow, updating the information about the orchestra-
tion status in the inventory and handling any possible error that might occur during
the operation process.

In the following subsections, more detailed information is provided at each step of the
workflow, describing the relationships with the different ONAP components and their logic.

5.1.1 Enrichment Stage

The workflow is executed when a ServiceOrder request is received on ONAP NBI compo-
nent. The ONAP NBI is in charge of validating the Service Order, as the API specification
defined by TM Forum [123], then order processing can be continued, otherwise, an error
code is returned. The service instantiation request was previously explored in Section 4.3.
When this request arrives from ONAP NBI, the API Handler from SO is responsible to
manage the request and parse the body to retrieve information data about service model.

59

60 Workflow Deployment

The connection to the API Handler is kept open until the main process flow sends back
a response. Using the model name of the resource, API Handler queries “service_recipe”
table from SO Catalog DB in order to invoke the BPMN workflow associated with the
service model name. Then, SO requests to Active and Available Inventory (AAI) for the
creation of a new record in AAI representing a service instance to which other resource
instances, belonging to the same service, will be correlated. In this way, AAI creates a
hierarchical tree of relationships among instances for describing the service. To accomplish
this stage, some requirements must be taken into account in its design. These arise from
the following identified tasks:

• Handle of the NBI request for vCDN scaling;

• Validate if any Network Service Instance already exists in a specific Cloud Region;

• Collect information about vCDN service;

• Obtainment of available resources information.

For a comprehensive explanation, the next subsections are divided into different groups
of activities.

5.1.1.1 NBI Request Handling

The workflow starts when the SO receives an API request from NBI to scale-out the vCDN
service. The first task which takes place is the preprocess of the incoming request, as shown
in Figure 5.1, in order to gather all necessary information about the service and saving
that information into the process variables of the workflow. It also informs the AAI about
the orchestration status (assigned or pending) and sends an asynchronous response to the
API Handler about the status of the request.

Update
Service

Operation
Status

Init Service
Operation

Status

PreProcess
Incoming
Request

Send Sync Ack

Start Scaling
Process

Go To Check NS

Figure 5.1: Handle of the NBI request for vCDN scaling.

5.1.1.2 Cloud Region Validation

The purpose of this validation aims to verify if any Service Instance already exists in
the specific Cloud Region. It starts by querying AAI with the “globalCustomerId” and
“serviceType” from Service Order, in a way to obtain all the Service Instances IDs, as
depicted in Figure 5.2. Then, it processes the response by checking if any Service Instance
was already created. If no Service Instance exists, it advances to the next task of the
workflow.

5.1 Process Methodology 61

Check NS

GET
All Service

Instances ID

Go to
Abort

workflow

GET Service
Instance by
Specific ID

VNF
exists?

GET
Generic VNF
by Service
Instance ID

Process
Next VNF

Go To
Collect

Info

Process Next
Service Instance?

Service
exists?

Go To
Collect

Info

no

Process Next
VNF

Process Next
Service Instance

yes

yes

no

no

yes

no
Service Instance

exists in this
Cloud Region?

yes

Figure 5.2: Cloud Region validation.

If any Service Instance exists, it obtains the necessary information to be able to compare
the values of “cloudRegion” and “cloudOwner” from the NBI request with the queries made
to AAI. If yes, an error message will be generated, and the workflow is aborted as a vCDN
node is already in that Cloud Region. This means that Service Order to scale-out the
vCDN service is not valid. Otherwise, it advances to the next task of the workflow.

5.1.1.3 Collect vCDN Service Information

After the previous validation, the BPMN workflow queries the AAI in a way to obtain all
Service Instances IDs, but this time with a different Service Type, as depicted in Figure 5.3.
It uses the “serviceType” from vCDN Core to obtain the Internet Protocol (IP) address.
This information will be used in the creation and instantiation operations. When the IP
address is obtained and saved into a process variable, the workflow advances to the next
task.

GET
Service Instance

by Specific ID

GET
Generic-VNF
IP Address

by SI ID

VNF
exists?

Process
finished?

Process
Next VNF

Process Next
Service Instance

no no

yes

GET ALL
Service

Instances IDs
with new

Service Type Go To Check
Resources

yes

Collect Info

Figure 5.3: Collect necessary information about vCDN service.

5.1.1.4 Access Required Resources

At the last operation of the enrichment stage, as depicted in Figure 5.4, the workflow
accesses the necessary resources (NS and VNF) and maintains this information in process
variables.

62 Workflow Deployment

GET NS
Packages

Does the Network
Service exist?

Check Resources

Create VNF
Resource

Information

yes

Go To Scale NS

Go to Abort
workflow

no

Figure 5.4: Collect information about required resources.

The SO interacts with the VF-C component by making a query, available in Appendix
A.1.1, for the NS Descriptors (NSD) through NSD Management interface using ETSI
NFV-SOL 005 Adapter to obtain the VNF Packages IDs (“vnfPkgIds”) and store them in
an Array list only if the “modelUUID” of the NBI request matches with the “id” from the
query made to VF-C. If not, the NS does not exists and in this way, an error message will
be generated and the workflow will be aborted.

Otherwise, it will advance to the next Script Task by querying VF-C, using the API
request available in Appendix A.2.1, through the VNF Package Management interface
using ETSI NFV-SOL 005 Adapter, by using each VNF ID from the previous Array list to
obtain the CSAR ID (“csarId”) and VNF Descriptor ID (“vnfdId”). Finally, this will result
in a new array list, comprising the information of VNF Packages available on VF-C, that
will be used in the Execution stage.

5.1.2 Execution Stage

This stage performs the scale-out of the vCDN service, based on the information collected
in the previous stage, it realizes the operations of creation and instantiation, along with
monitoring of instantiation progress. The identified tasks for this stage are the following:

• Prepare information to scale-out vCDN service;

• Creation and Instantiation requests;

• Monitoring of instantiation progress;

• Termination request;

• Monitoring of termination progress;

5.1.2.1 Prepare Information

Figure 5.5 depicts the workflow that prepares the information to send to the subflow that
will perform the scale-out operation of the vCDN service. For last, the task that informs
API Handler about the state of the workflow is further explained in Section 5.1.3.1.

5.1 Process Methodology 63

Send Sync Ack
Create &

Instantiate
Network Service

Prepare NS
Instantiation

Scale NS Go To Completion
Process

Figure 5.5: Prepare information to call subflow to scale-out vCDN service.

5.1.2.2 Creation and Instantiation Requests

At subflow, as illustrated in Figure 5.6, the workflow begins by receiving the parsed in-
formation from the main flow. Then, it realizes an API request to VF-C to create the
Network Service. This API request is available in Appendix A.3.1. If the request was well
succeeded it will proceed to the next Script Task. Otherwise, it will retry the request until
a maximum of 3 tries with a variable time interval between every request, as previously
presented in Section 4.4.4.2. In the case of after 3 unsuccessful attempts, the workflow will
be finished in the End Event named “Create NS Failed” (generating an error message and
updating the workflow status with failed). This mechanism of retry aims to safeguard and
make the workflow more robust in case of service unavailable endpoint or network error at
the moment the request is made.

After creating the Network Service, the instantiation request, available in the Appendix
A.3.2, takes place also implementing the retry mechanism for the reliability of workflow.

Create Network
Service

Preprocess
Incoming
Request

Instantiate
Network Service

Create NS
Success?

Instantiate NS
Success?

Create
NS Failed

Instantiate
NS Failed

Go To Instantiate
NS Progress

Abort workflow Abort workflow

Time Delay

InstantiateReTry

yes

no

yes

no

Figure 5.6: Creation and instantiation requests to scale-out vCDN service.

5.1.2.3 Monitoring of Instantiation Progress

In response to the instantiation request, a “jobId” variable is received in order to monitor the
instantiation progress. Figure 5.7 illustrates the workflow for monitoring the instantiation
progress. It uses the “jobId” to query the VF-C interface about the instantiation progress
in the loop cycle with a Time Delay defined between every query. This API request is
available in Appendix A.3.3.

64 Workflow Deployment

Instantiate
NS Progress

Instantiate
Finished?

Go To Validate
NS Status

success

failed

Process Catalog
JobId Response

Query NS
Progress

Prepare Query
NS Progress

Time Delay
in progress

Figure 5.7: Monitoring of instantiation progress.

When the instantiation process is finished, the “jobId” status is updated from processing
to finished or to error. If it concludes with finished status, it was well succeeded, thus return
to the main flow and inform the API Handler, as mentioned before. If the instantiation
process terminates with an error status, it shall retry the instantiation request, but before,
it will proceed to the termination request in order to terminate the Network Service.

5.1.2.4 Network Service Validation

The operations of error handling and rollback starts at this point of workflow. Before
the termination of Network Service, it is necessary to validate its status, as shown in
Figure 5.8: if the network instance status is ACTIVE or FAILED, it will proceed with
the termination process, this API request is available in Appendix A.3.4. If the status
is NOT_INSTANTIATED, the instantiation process failed for some reason, i.e., did not
instantiate correctly the Network Service. In this case, the workflow completion process
occurs with an error message, and the failed status is defined.

GET
NS ID Status

Validate
NS Status

Check
Status?

ACTIVE || FAILED

NOT
INSTANTIATED

Go To Error
And Rollback

Figure 5.8: Network service validation status.

5.1.2.5 Termination Request

The termination process, as illustrated in Figure 5.9, consists of making a request to the
VF-C interface ordering the termination of the desired Network Service. This API request
is available in Appendix A.3.5.

5.1 Process Methodology 65

Terminate
Finnished?

Go to Abort
workflow

Go to Terminate
NS Progress

success

error

Error and
Rollback

Prepare
Rollback
Process

Terminate NS

Figure 5.9: Termination request.

In response, the VF-C will return a “jobId”. Thus, using this “jobId” is possible to
follow the termination process, as illustrated in Figure 5.10, by querying the VF-C interface
through the use of the API request available in Appendix A.3.3. When the termination
request is finished, the workflow evaluates the mechanism of retry, if already tried to
instantiate the Network Service until three times without success it will generate an error
message and abort the workflow.

Prepare Query
NS Progress

Time Delay

Query NS
Progress

Process Catalog
JobId Response

success

Instantiate
Finished?

in progress failed

retry

Terminate
NS Progress

Go to Abort
workflow

InstantiateReTry

Figure 5.10: Monitoring of termination progress.

Otherwise, the termination process will be finished with success status and returns to
the main flow, in that moment it will reply to the API Handler about the orchestration
status.

5.1.3 Conclusion Stage

This stage comprehends all operations to conclude the workflow. The following scenarios
were identified:

• Workflow conclusion;

• Workflow with error:

– Abort workflow;

– Handle unexpected errors.

66 Workflow Deployment

5.1.3.1 Workflow Conclusion

The workflow conclusion is executed after the task “Send Sync Ack”, as depicted in Figure
5.5, that is in charge of informing the API Handler about the status of the workflow. As
depicted in Figure 5.11, the workflow concludes by returning one of two possible states:
complete or failed. The obtained status will depend on the result of the instantiation
process, if the Network Service was successfully instantiated the status complete will be
set. Otherwise, an error message and the status failed will be generated.

Prepare
Completion
Request

Call
CompleteMsoPr

ocess

Completion
Process

End

Figure 5.11: Conclusion process.

5.1.3.2 Abort Workflow

In case of aborting the workflow, due to the reasons mentioned before, such as the existence
of a Network Service in the same Cloud Region as the scale-out request or when some
operation over the Network Service fails, the workflow is depicted in Figure 5.12 will be
executed. This workflow aims to generate an error message and the status failed will be
defined and reported to the API Handler.

Call
FalloutHandler

Send Error
Response

Prepare Fallout
Request

Figure 5.12: Abort workflow.

5.1.3.3 Handle Unexpected Error

For last, in case of any other errors occur, the handling of such errors is performed by
the workflow depicted in Figure 5.13. This workflow also generates an error message and
informs the API Handler about the failed status.

Handle
Unexpected

Error

Figure 5.13: Unexpected error.

5.2 Summary 67

5.2 Summary

This Chapter focused on presenting the operation Design with a global scope on the
methodology for performing the orchestration of vCDN service. In this context, the
methodology adopted was divided into three different operational stages.

The enrichment stage carried out some important validations on the requested service
and the available resources.

Then, in the execution stage comprised the main operations of the management of the
lifecycle that allows the scale-out of the vCDN Edge Node.

Finally, the conclusion stage comprehended the operations of the conclusion and noti-
fication of the other components about the state of the orchestration.

Chapter 6

Obtained Results

This Chapter describes the tests performed and the achieved results, with the objective
of improving the quality of the designed workflow. In particular, the execution time and
the number of requests made in two specific operations of the vCDN service lifecycle man-
agement. It begins in Section 6.1, describing the study method and testbed configuration.
Following, Section 6.2 presents the used approach to obtain reference values. In Section
6.3, the obtained results for each value of Time Delay defined are presented. Finally, the
analysis of the results and the respective discussion are presented Section 6.4.

6.1 Study Method and Testbed

In order to improve the quality of the workflow developed, two specific and similar oper-
ations of the vCDN service were identified. In particular, the operations of monitor the
instantiation and termination progress, previously described in Section 5.1.2.3 and 5.1.2.5,
respectively. Both operations have a well-defined waiting time, named Time Delay, be-
tween each query made to the VF-C interface in order to obtain the “jobId” status. In this
sense, the reasons that led to the selection of the Time Delay value are as follows:

• Avoid excessive API requests: the defined time value of Time Delay should
not be short, as it is not intended to overload the VF-C interface with an excessive
number of requests (e.g., in a scenario with a huge number of requests);

• Avoid long time delays: the defined time value of Time Delay should also not be
long, preventing the workflow process from being stopped for a long period of time
waiting for the opportunity to make a new query to the VF-C interface. Resulting
in loss of operation time, as the SO will only execute the last query long time after
the “jobId” status has already been updated by the VF-C.

In this way, when selecting a value for the Time Delay, the reasons previously presented
will be taken into account, in order to find a balance between the operation execution time
and also the number of requests made to the VF-C interface.

69

70 Obtained Results

The study method and the testbed are described in the following subsections.

6.1.1 Study Method

The operations considered consist of monitoring the progress status, involving three par-
ticipants in their interactions: the SO, VF-C and OpenStack, as shown in the sequence
diagram of Figure 6.1.

SO VF-C OpenStack

Creation request1

Creation request2

Creation response3

Creation response4

Instantiation request5

Instantiation request6

Instantiation response7

Instantiation response with a "jobId"8

Query about instantiation "jobId" status9

Response with "jobId": "in progress"10

Instantiation process finished11

Response with "jobId": "finnished"12

Figure 6.1: Creation and instantiation operations in a successful scenario.

Two main interactions can be identified. On one hand, the communication between SO
and VF-C, with the SO ordering lifecycle management operations to the VF-C. On the
other hand, the interactions between VF-C and OpenStack, with the VF-C as a controller
adapter, playing an important role here bridging these two components.

Of these three participants, the OpenStack component spends more processing time
as it is in charge, of the instantiation and termination operations (depending on the sce-
nario of success or error), consisting on creation or removal of virtual links, connection
points, launching or finishing the services instances, association or dissociation of floating
IP address, etc.

6.1 Study Method and Testbed 71

SO VF-C OpenStack

Creation request1

Creation request2

Creation response3

Creation response4

Instantiation request5

Instantiation request6

Instantiation response7

Instantiation response with a "jobId"8

Query about instantiation "jobId" status9

Response with "jobId": "in progress"10

Failed11

Instantiation process finished12

Response with "jobId": "failed"13

Termination request14

Termination request15

Termination response16

Termination response with a "jobId"17

Query about termination "jobId" status18

Response with "jobId": "in progress"19

Termination process finished20

Response with "jobId": "finished"21

Figure 6.2: Creation, instantiation and termination operations in an error scenario.

Two scenarios were defined for exprimentation:

• Success Scenario: as represented in the sequence diagram of Figure 6.1, comprises
the creation (interactions 1 to 4), the instantiation request (interactions 5 to 8) and
the respective operation of monitoring the instantiation progress (starts at interac-
tion number 9 and depending on the time that instantiation operation takes, it will
perform several queries and responses until finishing at interaction number 12 by
acknowledging the “jobId” status of finnished);

72 Obtained Results

• Error Scenario: as depicted in the sequence diagram of Figure 6.2, comprehends
the creation (interactions 1 to 4), the instantiation (interactions 5 to 8) and the
operation of monitoring the instantiation progress (same interactions as explained
in scenario of success), but in this case, the instantiation of Network Service failed
(interaction 11). In this turn, the termination request takes place (interactions 14 to
17) ordering the finish of the NS instance and also tracking the termination progress
(between interaction 18 and 19 several queries and responses are performed until the
end at interaction number 21 by acknowledging the finnished status).

6.1.2 Testbed Environment

In order to achieve a value for these specific operations of the vCDN Edge Node, the tests
performed during this analysis were executed in the same testbed environment with two
separate test cases, one for ONAP (as previously presented in Section 4.1.3) and another
for the vCDN service, both made available in the same physical location.

Table 6.1: Testbed configuration of vCDN Edge Node.

Virtual Machines
Resources

vCPU RAM (GB) HD (GB) OS

vCDN Edge Node Storage VNF 2 4 20 Ubuntu 18.04
vCDN Edge Node Streamer VNF 2 4 20 Ubuntu 18.04

The testbed environment provided an OpenStack (Queens release) infrastructure con-
taining already deployed instances of the required vCDN service components. In particular,
the test case of the vCDN Edge Node component consists of two VNFs, the Storage VNF
and the Streamer VNF, both with 2 vCPU and 4 GB of RAM, as described in Table 6.1.

6.2 Determination of Reference Values

This Section presents the used method to obtain results without any Time Delay value
defined. For the determination of reference values, a Bash script was developed, which is
available in Appendix B, to measure the elapsed execution time and also count the number
of requests made to the API of VF-C. The results obtained with two sets of tests, each with
20 samples collected for both considered scenarios, are presented in Table 6.2. This Table
allows to analyze the different variables of each operation, such as the average execution
time, the standard deviation, the average number of requests and also the overhead size
(payload). With this last variable being obtained through the multiplication between the
Average Number of Requests and the size of one API request for instantiation (351 bytes)
and another for the termination (353 bytes) operation1.

1These values were obtained by using Wireshark open-source packet analyzer application.

6.3 Obtained Results for Time Delay Definition 73

Table 6.2: Obtained reference values for both scenarios.

Scenario
Average
Time (s)

Standard
Deviation (s)

Total
Samples

Average Number
of Requests

Overhead
Size (kB)

Success
Monitoring of Instantiation Progress 521.66 76.18 20 906.8 318.27

Error
Monitoring of Instantiation Progress 131.04 9.95 20 364.1 127.79
Monitoring of Termination Progress 12.78 6.99 20 30.2 10.66

For the success scenario, the script follows the logic of Figure 6.1, however in this case
the SO is replaced by the computer terminal that executes the Bash script and the used
VF-C interface is an external one to allow this set of tests. In this scenario, for the creation
and instantiation operations, the average time was 521.66 s, the standard deviation was
76.18 s, the average number of requests was 906.8 and the total overhead size was 318.27 kB.

In the error test scenario, the developed script follows the logic of Figure 6.2, with
the SO also being replaced by the computer terminal that runs the Bash script and the
external interface of VF-C was used for this test. The obtained results for the creation
and instantiation operations, the average time was 131.04 s and the standard deviation
was 9.95 s, with an average number of requests of 364.1 and the total overhead size was
127.79 kB. And for the termination operation, the average time was 12.78 s while the
standard deviation was 6.99 s, with the total overhead size of 10.66 kB and the average
number of requests was 30.2.

6.3 Obtained Results for Time Delay Definition

This Section presents the results obtained for the tests carried out with different values of
Time Delay, defined for both scenarios of success and error. The selected test values were:

• T1 = 1 s; T2 = 2 s; T3 = 5 s; T4 = 10 s; T5 = 15 s; T6 = 20 s; T7 = 60 s.

Through the results obtained for these Time Delay values, it will be possible to select
the value that encompasses the best trade-off, between the number of calls made to the
API and the total execution time. The analysis and selection of this value will be further
analyzed in Section 6.4. The following subsections present the testing method and the
obtained results for both scenarios through the designed workflow.

6.3.1 Testing Method

In the designed workflow, by configuring the Script Task of Time Delay with the values
previously selected, and programming the workflow to measure the elapsed execution time
and the number of requests made, it was possible to obtain the results here presented.

74 Obtained Results

Each individual test consists of making an API request to the ONAP NBI ordering the
instantiation of the service.

Then, through the computer terminal, by accessing to the SO log file, it was possible to
follow every step of the workflow and register the results presented in the next subsections.

6.3.2 Success Scenario

The obtained results for this scenario are depicted in the bar chart of Figure 6.3 and
summarized in Table 6.3.

T1 = 1s T2 = 2s T3 = 5s T4 = 10s T5 = 15s T6 = 20s T7 = 60s
Time Delay Definition

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

n
T

im
e

(s
)

 600.86 601.66

 638.59
 654.35

 704.12 700.18

 759.57

Average Number of Requests
395.70 requests 228.95 requests 126.40 requests 64.50 requests 46.55 requests 36.20 requests 12.30 requests

Figure 6.3: Obtained results of monitoring of instantiation progress in a scenario of success.

The lower value of Time Delay, the T1 value has a mean execution time of 600.86 s
and the average number of requests was 396.7. For the higher value of Time Delay, the
T7 value the average execution time was 759.57 s and the average number of requests was
12.3.

Table 6.3: Obtained results of monitoring of instantiation progress in a scenario of success.

Time
Delay (s)

Average
Time (s)

Standard
Deviation (s)

Total
Samples

Average Number
of Requests

Overhead
Size (kB)

1 600.860 23.050 20 395.70 138.89
2 601.657 23.143 20 228.95 80.36
5 638.589 39.063 20 126.40 44.37
10 654.352 38.259 20 64.50 22.64
15 704.122 32.094 20 46.55 16.34
20 700.175 39.358 20 36.20 12.71
60 759.571 57.202 20 12.30 4.32

6.3 Obtained Results for Time Delay Definition 75

6.3.3 Error Scenario

6.3.3.1 Monitoring of Instantiation Progress

The obtained results for the operations of monitoring the instantiation progress in an error
scenario are depicted in the bar chart of Figure 6.4 and summarized in Table 6.4.

T1 = 1s T2 = 2s T3 = 5s T4 = 10s T5 = 15s T6 = 20s T7 = 60s
Time Delay Definition

0

50

100

150

200

250

300

E
xe

cu
tio

n
T

im
e

(s
)

 250.34 254.62
 246.78 245.20 240.48

 256.03
 261.78

Average Number of Requests
163 requests 92.75 requests 43.65 requests 24.15 requests 15.40 requests 12.30 requests 5.30 requests

Figure 6.4: Obtained results of monitoring of instantiation progress in an error scenario.

The T1 value has a mean execution time of 250.34 s and the average number of requests
was 163. The T7 value the average execution time was 261.78 s and the average number of
requests was 5.3.

Table 6.4: Obtained results of monitoring of instantiation progress in an error scenario.

Time
Delay (s)

Average
Time (s)

Standard
Deviation (s)

Total
Samples

Average Number
of Requests

Overhead
Size (kB)

1 250.337 11.289 20 163 57.21
2 254.619 8.675 20 92.75 32.55
5 246.779 12.135 20 43.65 15.32
10 245.203 13.732 20 24.15 8.48
15 240.475 6.257 20 15.40 5.41
20 256.028 9.243 20 12.30 4.32
60 261.781 26.960 20 5.30 1.86

76 Obtained Results

6.3.3.2 Monitoring of Termination Progress

The obtained results for the operations of monitor the termination progress in an error
scenario are depicted in the bar chart of Figure 6.5 and summarized in Table 6.5.

T1 = 1s T2 = 2s T3 = 5s T4 = 10s T5 = 15s T6 = 20s T7 = 60s
Time Delay Definition

0

10

20

30

40

50

60

70

80

E
xe

cu
tio

n
T

im
e

(s
)

 18.40
 21.15

 23.54 22.49

 29.30 29.83

 71.76

Average Number of Requests
9.45 requests 8.55 requests 5.50 requests 2.75 requests 2.55 requests 2.05 requests 2 requests

Figure 6.5: Obtained results of monitoring of termination progress in an error scenario.

The lower value of Time Delay, the T1 value has a mean execution time of 18.40 s and
the average number of requests was 9.45. For the higher value of Time Delay, the T7 value
the average execution time was 71.76 s and the average number of requests was 2.

Table 6.5: Obtained results of monitoring of termination progress in an error scenario.

Time
Delay (s)

Average
Time (s)

Standard
Deviation (s)

Total
Samples

Average Number
of Requests

Overhead
Size (kB)

1 18.400 6.334 20 9.45 3.34
2 21.146 6.201 20 8.55 3.02
5 23.542 7.581 20 5.50 1.94
10 22.493 6.605 20 2.75 0.97
15 29.304 9.428 20 2.55 0.90
20 29.828 9.109 20 2.05 0.72
60 71.755 3.955 20 2 0.71

6.4 Results Analysis

This Section provides the analysis of the obtained results previously presented in Section
6.2 and 6.3 for the selection of the Time Delay value.

6.4 Results Analysis 77

6.4.1 Observations

As observed in both sequence diagram of Figure 6.1 and 6.2, a great part of processing
time is spent by OpenStack during the operations to initialize and configure the required
VNF instances. And also in an opposite way, during the shut down of VNF instances
when termination request takes place. The remaining operating time is used in message
exchanges between the SO and VF-C, and between the VF-C and OpenStack. The Activ-
ities performed by the workflow also spend time on execution and processing but are not
significant.

As mentioned at the beginning of this Chapter, the main goal is to improve the quality
of the designed workflow by evaluating an value with the best trade-off for the configuration
of the Time Delay Script Task operations.

Through the analysis of the Tables 6.3, 6.4 and 6.5, it is possible to make the following
high-level observations: as the value set for the Time Delay increases, the average number
of requests realized decreases. As well as the size of the associated overhead also decreases.
Besides, as the value set for the Time Delay increases, the workflow completion time also
increases, as would be expected, since the waiting time is increasing.

6.4.2 Time Delay Selection

The method used for the Time Delay selection focuses on the analysis of only two values
of Time Delay: T2=2 s and T3=5 s, thus avoiding T0 and T1 as they have a high average
number of orders placed and have lower waiting values. And also avoiding the times of
T4, T5, T6 and T7 as they have Time Delays values that greatly increase the workflow
execution time.

Therefore, considering only the values of execution time and the number of average
requests, in a successful scenario for the monitor of instantiation progress operation, T2

value has an average execution time of 601.66 s and an average number of requests of
228.95. Meanwhile, T3 value has an average execution time of 638.59 s and an average
number of requests of 126.40.

For the operation of monitoring of instantiation progress, in an error scenario, T2 value
has an average execution time of 254.62 s and the average number of requests is 92.75.
In contrast, T3 value has an average execution time of 245.29 s and an average number of
requests of 43.65. Finally, for the operation of monitoring of termination progress, T2 value
has an average execution time of 21.15 s and an average number of requests of 8.55. In
turn, T3 value has an average execution time of 23.54 s and an average number of requests
of 5.50.

After this analysis and taking into account the considered reasons for its selection, the
T3 value was used. For presenting the lowest average number of requests made and being
also the most balanced among the other selected values.

78 Obtained Results

As a final observation, the definition of Time Delay value brings value to this work by
increasing the quality of the designed workflow and also proved its functional validation.
This study was not defined as a goal of this work but helped to complement the quality of
these operations. However, the high standard deviation has shown that the conditions of
the system vary significantly. Furthermore, the values here obtained are only valid for the
used testbed environment.

Chapter 7

Final Remarks

This Chapter comprehends the entire work of this Dissertation, by describing the work
performed and its value, as well as possible future improvements that can be made.

7.1 Conclusions

The main objective of this Dissertation was the integration of services developed for 5G
networks, by enabling the essential lifecycle management operations using a reference open-
source orchestration platform.

In order to address the objective of this work, various phases were identified. The
first phase comprised the study and the understanding of several background concepts,
more specifically about the Camunda BPM platform. From all components of Camunda
BPM, the Camunda Modeler had a special relevance in this work, enabling the design and
implementation of the orchestration logic of the workflow to achieve process automation.

The second phase included the comprehensive study of the ONAP by identifying the
necessary components and their operations. This phase also included the validation of the
considered orchestration platform, by integrating a vCDN service in the scope of a closed-
loop scenario in order to solve a network problem through the scale-out operation of the
vCDN service. The SO and VF-C components were highly relevant in this phase. On one
hand, the SO component performed the service orchestration logic by taking advantage
of the Camunda Process Engine. On the other hand, the VF-C enabled the integration
between the vCDN service and the orchestration platform, since they are in line with ETSI
NFV-MANO reference architecture.

After the successful deployment and validation of the vCDN service lifecycle manage-
ment, the attention turned to the improvement of the quality of the designed workflow
arises. The results of the tests carried out made it possible to evaluate a better value for
these operations, preventing network overloads with excessive requests, and also avoiding
time wastes during the operation execution.

79

80 Final Remarks

In conclusion, this Dissertation showed that ONAP is an excellent open-source NSO
solution, and its ETSI-alignment increases the interoperability with different vendors and
reduces the time-to-market of the new products. Besides, the design and development of
the scale-out operation were successfully validated enabling the orchestration of the vCDN
service, which directly contributed to the 5G Mobilizer project.

7.2 Future Work

In terms of future work, some considerations are described as follows:

• Error Mapping: implementation of an error map mechanism, which intends to
inform the developer of the location of any possible error that may occur during the
execution of the workflow;

• Handling of repeated requests: implementation of the ability to evaluate re-
peated requests in the designed workflow. Assuming a system error scenario, in
which for some reason the component responsible for the request validation is not
working well, and for example, it accepts two repeated requests. In this context, as-
signing this functionality to the workflow will allow automated management for this
type of situation, in the process of validation and decision make of only one request
for the orchestration of the desired service. As a result, the orchestrator will be more
independent and resilient.

Appendix A

ONAP ETSI NFV API

ETSI NFV-SOL 005 defined RESTful API for Os-Ma-nfvo reference point, shared between
OSS and NFVO functions. Mapping this architecture to ONAP components. The SO
represents the OSS functionality as it oversees end-to-end services and VF-C represents
the NFVO functionality as it performs the orchestration of network services. By aligning
the interface between SO and VF-C to ETSI NFV-SOL 005, any external NFVO can use
ONAP SO for the service orchestration layer.

This Appendix provides the RESTful API specification and the associated request
payload for the NSD Management interface, VNF Package Management interface and
Network Service Lifecycle Management interface operations. More details about SO offered
and consumed APIs can be found in [126, 137].

A.1 Network Service Descriptor Management Interface

The Network Service Descriptor Management interface allows to subscribe, query subscrip-
tion information, terminate, and notify. The API request that was used in the interaction
between the SO and NFVO component is presented in the following subsection.

A.1.1 Get Network Service Descriptor Resources

Table A.1: API Request Definition of Get information about NSD resources.

Interface Definition Description
Operation Type GET
Content-Type application/json
Headers Basic Authentication
URI http://{hostname}:30280/api/nsd/v1/ns_descriptors

81

82 ONAP ETSI NFV API

Table A.2: API Response Payload of Get NSD resources.

Attribute Data Type Description
id String Uniquely identifies this instance of Network Service
nsdId String ID of Network Service Descriptor
nsdName String Name of the Network Service Descriptor
nsdInvariantId String ID of Network Service Descriptor
vnfPkgIds String Identifies the VNF Packages IDs for the VNFD

A.2 VNF Package Management Interface

The VNF Package Management interface allows to subscribe, fetch VNF Package artifacts,
query subscription information and terminate. The API request that was used in the
interaction between SO and NFVO component is presented in the following subsection.

A.2.1 Get Individual VNF Package Information

Table A.3: API Request Definition of Get information about an individual VNF package.

Interface Definition Description
Operation Type GET
Content-Type application/json
Headers Basic Authentication
URI http://{hostname}:30280/api/vnfpkgm/v1/vnf_packages/{vnfPkgId}

Table A.4: API Response Payload of Get information about an individual VNF package.

Attribute Data Type Description
id String Uniquely identifies the VNF Package
vnfdId String ID of the VNF Descriptor Package resource

A.3 Network Service Lifecycle Management Interface

The Network Service Lifecycle Management interface allows various operations, such as
create, delete, get, instantiate and terminate Network Services. These API requests were
used in the interaction between SO and NFVO component, and are presented in the fol-
lowing subsections.

A.3 Network Service Lifecycle Management Interface 83

A.3.1 Create Network Service

Table A.5: API Request Definition of Create NS.

Interface Definition Description
Operation Type POST
Content-Type application/json
Headers Basic Authentication
URI http://{hostname}:30280/api/nslcm/v1/ns/

Table A.6: API Request Payload of Create NS.

Attribute Data Type Description
context Object Information on the Context
globalCustomerId String Global Customer ID used to uniquely identify cus-

tomer
serviceType String Value defined by orchestration to identify the service
nsName String Name of the Network Service
csarId String Information regarding workflow control parameters
description String Description

Table A.7: API Response Payload of Create NS.

Attribute Data Type Description
nsInstanceId String Uniquely identifies this instance of a service

A.3.2 Instantiate Network Service

Table A.8: API Request Definition of Instantiate NS.

Interface Definition Description
Operation Type POST
Content-Type application/json
Headers Basic Authentication
URI http://{hostname}:30280/api/nslcm/v1/ns/{nsInstanceId}/instantiate

84 ONAP ETSI NFV API

Table A.9: API Request Payload of Instantiate NS.

Attribute Data Type Description
nsInstanceId String Uniquely identifies this instance of Network

Service
additionalParamForNs String additionalParamForNs
LocationConstraints Array LocationConstraints (vnfProfileId and vimId)

Table A.10: API Response Payload of Instantiate NS.

Attribute Data Type Description
jobId String Job ID

A.3.3 Monitoring Instantiation/Termination Progress

Table A.11: API Request Definition of Get operation progress.

Interface Definition Description
Operation Type GET
Content-Type application/json
Headers Basic Authentication
URI http://{hostname}:30280/api/nslcm/v1/jobs/{jobId}

Table A.12: API Response Payload of Get NS.

Attribute Data Type Description
nsInstanceId String Uniquely identifies this instance of Network Service
nsName String Name of the Network Service
description String Description
nsdId String ID of Network Service
nsState String State of Network Service

A.3.4 Get Network Service

Table A.13: API Request Definition of Get NS.

Interface Definition Description
Operation Type GET
Content-Type application/json
Headers Basic Authentication
URI http://{hostname}:30280/api/nslcm/v1/ns/

A.3 Network Service Lifecycle Management Interface 85

Table A.14: API Response Payload of Get NS.

Attribute Data Type Description
nsInstanceId String Uniquely identifies this instance of Network Service
nsName String Name of the Network Service
description String Description
nsdId String ID of Network Service
nsState String State of Network Service

A.3.5 Terminate Network Service

Table A.15: API Request Definition of Terminate NS.

Interface Definition Description
Operation Type POST
Content-Type application/json
Headers Basic Authentication
URI http://{hostname}:30280/api/nslcm/v1/ns/{nsInstanceId}/terminate

Table A.16: API Request Payload of Terminate NS.

Attribute Data Type Description
nsInstanceId String Uniquely identifies this instance of Net-

work Service
gracefulTerminationTimeout String gracefulTerminationTimeout
terminationType String terminationType

Table A.17: API Response Payload of Terminate NS.

Attribute Data Type Description
jobId String Job ID

Appendix B

Service Response Time

This Appendix includes the Bash script developed to obtain the duration of the elapsed
time and also the maximum number of requests made between the SO and the VF-C.

B.1 Bash Script

1 #!/bin/bash

2 # -

3 # Title: Script to measure the Service Response Time between SO and VF-C

4 # Description: This script measures time and number of API requests

5 # Operations: Create, Instantiate and Terminate NS

6 # Author: Tiago Amaral

7 # -

8 # Installation of Curl and jq (external library for Json parser):

9 # sudo apt update

10 # sudo apt install -y curl

11 # sudo apt-get install jq

12

13 for i in {1..20}

14 do

15

16 # Set Counter Request to 0

17 countRequestInstantiate=0

18 # Start Time Counter:

19 res1=$(date +%s.%N)

20

21 # # # # # # # # # # # # # # # # Create NS #

22 printf "\n------ Begin: Create Network Service -----------"

23 curl -s --location --request POST 'http://192.168.1.52:30280/api/nslcm/v1/ns' \

24 -w "\n\tResponse Code is: %{http_code}\n" \

25 -o responseGetCreateNS.json \

26 --header 'accept: application/json' \

27 --header 'cache-control: no-cache' \

28 --header 'content-type: application/json' \

29 --data-raw '{

87

88 Service Response Time

30 "context": {

31 "globalCustomerId": "Altran",

32 "serviceType": "SERVICE_ATRAN_DEMO"

33 },

34 "csarId": "0d58bde6-5aec-4bda-af8d-7d6c85f2db59",

35 "description": "description",

36 "nsName": "NS_NODE_STREAMER1"

37 }'

38 # Obtain nsIntanceId:

39 nsInstanceId=$(jq -r '.nsInstanceId' responseGetCreateNS.json)

40 printf "\n\tNS Instance ID is: $nsInstanceId"

41 # Increment Counter:

42 countRequestInstantiate=$(($countRequestInstantiate+1))

43 printf "\n------ Finish: Create Network Service -----------\n"

44

45 # # # # # # # # # # # # # # Instantiate NS #

46 printf "\n------ Begin: Instantiate Network Service --------"

47 curl -s --location --request POST "http://192.168.1.52:30280/api/nslcm/v1/ns/

$nsInstanceId/instantiate" \

48 -w "\n\tResponse Code is: %{http_code}\n" \

49 -o responseInstantiate.json \

50 --header 'accept: application/json' \

51 --header 'cache-control: no-cache' \

52 --header 'Content-Type: application/json' \

53 --data-raw '{

54 "additionalParamForNs": {

55 "sdnControllerId": "2",

56 "vcdn_node_storage_id": "687980890890",

57 "vcdn_engine_address": "192.168.1.74"

58 },

59 "locationConstraints": [

60 {

61 "vnfProfileId": "ab40934c-8b92-4514-ad6e-e84f9f4edc47",

62 "locationConstraints": {

63 "vimId": "ONAP_RegionOne"

64 }

65 },

66 {

67 "vnfProfileId": "04db9544-5e13-4638-9ca0-1ce8b1eab15e",

68 "locationConstraints": {

69 "vimId": "ONAP_RegionOne"

70 }

71 }

72]

73 }'

74 # Obtain jobId from NS Intance:

75 jobId=$(jq -r '.jobId' responseInstantiate.json)

76 printf "\n\n\tJobId is: $jobId"

77

B.1 Bash Script 89

78 # Increment Counter from last request and for the next one:

79 countRequestInstantiate=$(($countRequestInstantiate+2))

80

81 printf "\n\n------ Check Instantiate Progress --------\n"

82 while true

83 do

84 jobId=$(jq -r '.jobId' responseInstantiate.json)

85 printf "\n\n\tJobId is: $jobId"

86 url='http://192.168.1.52:30280/api/nslcm/v1/jobs/'

87 urlFinal="urljobId"

88 printf "\n\n\tURL for Check Instantiate Progress is:\n\n\t$urlFinal"

89 curl -s --location --request GET "$urlFinal" \

90 -w "\n\n\tResponse Code is: %{http_code}\n" \

91 -o responseInstProgress.json \

92 --header 'accept: application/json' \

93 --header 'content-type: application/json' \

94 --header 'cache-control: no-cache' \

95 --header 'connection: keep-alive' \

96 --data-raw ''

97 # Obtain operationStatus:

98 operationStatus=$(jq -r '.responseDescriptor.status' responseInstProgress.json)

99 # Set condition for break:

100 if ["$operationStatus" != "processing"]

101 then

102 printf "\n\n\tThe operationStatus is: $operationStatus" >> instantiate.txt

103 break

104 # Set condition for continue:

105 else

106 # Increment Counter:

107 countRequestInstantiate=$(($countRequestInstantiate+1))

108 printf "\n\n\tThe operationStatus is: processing..."

109 continue

110 fi

111 done

112 printf "\n\n------ Finish: Check Instantiate Progress --------\n"

113 printf "\n\n------ Finish: Instantiate Network Service --------\n"

114 # -

115 res2=$(date +%s.%N)

116 dt=$(echo "$res2 - $res1" | bc)

117 dd=$(echo "$dt/86400" | bc)

118 dt2=$(echo "$dt-86400*$dd" | bc)

119 dh=$(echo "$dt2/3600" | bc)

120 dt3=$(echo "$dt2-3600*$dh" | bc)

121 dm=$(echo "$dt3/60" | bc)

122 ds=$(echo "$dt3-60*$dm" | bc)

123

124 LC_NUMERIC=C printf "\n\tTotal runtime (instantiate): %d:%02d:%02d:%02.3f\n" $dd

$dh $dm $ds >> instantiate.txt

125 printf "\n\tCounter Request value is: $countRequestInstantiate" >> instantiate.txt

90 Service Response Time

126 # # # # # # # # # # # # # # Terminate NS #

127 res3=$(date +%s.%N)

128 # Set Counter Request Terminate to 0:

129 countRequestTerminate=0

130

131 printf "\n------ Begin: Terminate Network Service -----------"

132 # Obtain nsInstanceId variable to terminate:

133 nsInstanceId=$(jq -r '.nsInstanceId' responseGetCreateNS.json)

134 printf "\n\n\tNS Instance ID is: $nsInstanceId"

135 url='http://192.168.1.52:30280/api/nslcm/v1/ns/'

136 action='/terminate'

137 urlTerminate="urlnsInstanceId$action"

138 printf "\n\n\tURL for Termination Request is:\n\n\t$urlTerminate"

139 curl -s --location --request POST "$urlTerminate" -w "\n\tResponse Code is: %{

http_code}\n" -o responseTerminate.json \

140 --header 'accept: application/json' \

141 --header 'cache-control: no-cache' \

142 --header 'content-type: application/json' \

143 --data-raw '{

144 "gracefulTerminationTimeout": 600,

145 "terminationType": "FORCEFUL"

146 }'

147 # Obtain jobId from NS Intance:

148 jobIdTerminate=$(jq -r '.jobId' responseTerminate.json)

149 printf "\n\n\tJobId is: $jobIdTerminate"

150 # Increment countRequestTerminate from last request and for the next one:

151 countRequestTerminate=$(($countRequestTerminate+2))

152 # -

153 printf "\n\n------ Check Terminate Progress --------\n"

154 while true

155 do

156 jobIdTerminate=$(jq -r '.jobId' responseTerminate.json)

157 printf "\n\n\tJobId is: $jobIdTerminate"

158

159 url='http://192.168.1.52:30280/api/nslcm/v1/jobs/'

160 urlTermProgress="urljobIdTerminate"

161 printf "\n\n\tURL for Check Terminate Progress is:\n\n\t$urlTermProgress"

162

163 curl -s --location --request GET "$urlTermProgress" -w "\n\tResponse Code is: %{

http_code}\n" -o responseTermProgress.json \

164 --header 'accept: application/json' \

165 --header 'content-type: application/json' \

166 --header 'cache-control: no-cache' \

167 --header 'connection: keep-alive' \

168 --data-raw ''

169

170 # Obtain operationStatus:

171 operationStatus=$(jq -r '.responseDescriptor.status' responseTermProgress.json)

172

B.1 Bash Script 91

173 # Set condition for break:

174 if ["$operationStatus" != "processing"]

175 then

176 printf "\n\n\tThe operationStatus is: $operationStatus" >> terminate.txt

177 break

178 # Set condition for continue:

179 else

180 # Increment Counter:

181 countRequestTerminate=$(($countRequestTerminate+1))

182 printf "\n\n\tThe operationStatus is: processing..."

183 continue

184 fi

185 done

186 printf "\n\n------ Finish: Check Terminate Progress --------\n"

187 printf "\n\n------ Finish: Terminate Network Service --------\n"

188

189 res4=$(date +%s.%N)

190 dt=$(echo "$res4 - $res3" | bc)

191 dd=$(echo "$dt/86400" | bc)

192 dh=$(echo "$dt2/3600" | bc)

193 dt3=$(echo "$dt2-3600*$dh" | bc)

194 dm=$(echo "$dt3/60" | bc)

195 ds=$(echo "$dt3-60*$dm" | bc)

196 LC_NUMERIC=C printf "\n\tTotal runtime (terminate): %d:%02d:%02d:%02.3f\n" $dd $dh

$dm $ds >> terminate.txt

197 printf "\n\tCounter Request FINAL value for termination operation is:

$countRequestTerminate" >> terminate.txt

198 # -

199 done

200 # EOF

Listing B.1: Script for measuring elapsed time and number of requests

References

[1] K. Kusume and M. Fallgren, “Updated scenarios, requirements and KPIs for 5G
mobile and wireless system with recommendations for future investigations (D1.5),”
METIS, Tech. Rep., May. 2015, last accessed on 12/04/2020. [Online]. Available:
www.metis2020.com/wp-content/uploads/deliverables/METIS_D1.5_v1.pdf

[2] 5G-PPP Architecture Working Group, “View on 5G Architecture v.
3.0,” 5G PPP Initiative, Tech. Rep., Jun. 2019. [Online]. Avail-
able: www.5g-ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-
White-Paper_v3.0_PublicConsultation.pdf

[3] Ericsson, “White Paper: 5G Systems – Enabling the transformation of industry
and society,” Ericsson, Tech. Rep., Jan. 2017, last accessed on 12/04/2020.
[Online]. Available: www.ericsson.com/49daeb/assets/local/reports-papers/white-
papers/wp-5g-systems.pdf

[4] 5GO, “Project 5GO,” last accessed on 19/04/2020. [Online]. Available: https:
//5go.pt/en/

[5] E. Dahlman, S. Parkvall, and J. Sköld, 4G: LTE/LTE-Advanced for Mobile Broad-
band, 2nd ed. Academic Press, 2014.

[6] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5G network slicing
using SDN and NFV: A survey of taxonomy, architectures and future challenges,”
Computer Networks, vol. 167, p. 40, 2020. [Online]. Available: http://doi.org/dv29

[7] ITU-R, “Recommendation ITU-R M.2370-0 -IMT traffic estimates for the
years 2020 to 2030,” M Series, Tech. Rep., 2015. [Online]. Available:
www.itu.int/ITU-R/go/patents/en

[8] E. Dahlman, S. Parkvall, and J. Sköld, 5G NR: The Next Generation Wireless Access
Technology. Mara Conner, 2018.

[9] ITU-R, “ITU-R FAQ on IMT,” 2019, last accessed on 20/04/2020. [Online].
Available: www.itu.int/en/ITU-R/Documents/ITU-R-FAQ-IMT.pdf

[10] ITU, “ITU global standard for international mobile telecommunications,” 2020,
last accessed on 20/04/2020. [Online]. Available: www.itu.int/en/ITU-R/study-
groups/rsg5/rwp5d/imt-adv/Pages/default.aspx

[11] ITU-R, “Recommendation ITU-R M.2083-0 - IMT Vision – Framework and overall
objectives of the future development of IMT for 2020 and beyond,” M Series, Tech.
Rep., 2015. [Online]. Available: www.itu.int/ITU-R/go/patents/en

93

94 REFERENCES

[12] E. Guttman, “5G Standardization in 3GPP,” 2018, last accessed
on 20/04/2020. [Online]. Available: www.itu.int/en/ITU-T/Workshops-and-
Seminars/201807/Documents/3_Erik_Guttman.pdf

[13] ETSI, “ETSI Worldwide - Global Business Standards Collaboration,” 2020, last
accessed on 20/04/2020. [Online]. Available: www.etsi.org/about/etsi-worldwide

[14] L. Casaccia, “Understanding 3GPP – starting with the ba-
sics,” 2017, last accessed on 21/04/2020. [Online]. Available:
www.qualcomm.com/news/onq/2017/08/02/understanding-3gpp-starting-basics

[15] 3GPP, “Releases,” 2020, last accessed on 21/04/2020. [Online]. Available:
www.3gpp.org/specifications/releases

[16] 3GPP, “Feasibility Study on New Services and Markets Technology Enablers,” 3rd
Generation Partnership Project, Tech. Rep. 22.891 - Release 14.1.0, Stage 1, Jun.
2016. [Online]. Available: www.3gpp.org/DynaReport/22891.htm

[17] 3GPP, “Feasibility Study on New Services and Markets Technology Enablers
for Massive Internet of Things,” 3rd Generation Partnership Project, Tech.
Rep. 22.861 - Release 14.1.0, Stage 1, Sep. 2016. [Online]. Available:
www.3gpp.org/DynaReport/22861.htm

[18] 3GPP, “Feasibility Study on New Services and Markets Technology Enablers
for Critical Communications,” 3rd Generation Partnership Project, Tech.
Rep. 22.862 - Release 14.1.0, Stage 1, Oct. 2016. [Online]. Available:
www.3gpp.org/DynaReport/22862.htm

[19] 3GPP, “Feasibility Study on New Services and Markets Technology Enablers
- enhanced Mobile Broadband,” 3rd Generation Partnership Project, Tech.
Rep. 22.863 - Release 14.1.0, Stage 1, Sep. 2016. [Online]. Available:
www.3gpp.org/DynaReport/22863.htm

[20] 3GPP, “Feasibility Study on New Services and Markets Technology En-
ablers - Network Operation,” 3rd Generation Partnership Project, Tech.
Rep. 22.864 - Release 14.1.0, Stage 1, Sep. 2016. [Online]. Available:
www.3gpp.org/DynaReport/22864.htm

[21] 3GPP, “Service requirements for V2X services,” 3rd Generation Partnership
Project, Tech. Rep. 22.185 - Release 14.1.0, Stage 1, Jun. 2016. [Online]. Available:
www.3gpp.org/DynaReport/22185.htm

[22] 3GPP, “Summary of Rel-15 Work Items,” 3rd Generation Partnership
Project, Tech. Rep. 21.915 - Release 15.0, Oct. 2019. [Online]. Available:
www.3gpp.org/DynaReport/21915.htm

[23] ETSI, “Mobile Technologies - 5G,” 2020, last accessed on 20/04/2020. [Online].
Available: www.etsi.org/technologies/5g

[24] 3GPP, “System architecture for the 5G System,” 3rd Generation Partnership
Project, Tech. Rep. 23.501 - Release 16.4.0, Stage 2, Mar. 2020. [Online]. Available:
www.3gpp.org/DynaReport/23501.htm

REFERENCES 95

[25] 3GPP, “Study on new radio access technology: Radio access architecture and
interfaces,” 3rd Generation Partnership Project, Tech. Rep. 38.801 - Release 14.0,
Apr. 2017. [Online]. Available: www.3gpp.org/DynaReport/38801.htm

[26] 5G Americas, “5G Network Transformation - White Paper,” 5G Amer-
icas, Tech. Rep., Jul. 2017. [Online]. Available: www.5gamericas.org/wp-
content/uploads/2019/07/5G_Network_Transformation_Final.pdf

[27] 5G Americas, “5G and the Cloud - White Paper,” 5G Americas, Tech. Rep., Dec.
2019. [Online]. Available: www.5gamericas.org/wp-content/uploads/2019/12/5G-
Americas_5G-and-the-Cloud..pdf

[28] 3GPP, “5G System; Technical Realization of Service Based Architecture,” 3rd
Generation Partnership Project, Tech. Rep. 29.500 - Release 16.3.0, Stage 3, Mar.
2019. [Online]. Available: www.3gpp.org/DynaReport/29500.htm

[29] R. El Hattachi and J. Erfanian, “5G White Paper by NGMN Alliance v.1.0,”
5G Initiative, Tech. Rep., Feb. 2015. [Online]. Available: www.ngmn.org/wp-
content/uploads/NGMN_5G_White_Paper_V1_0.pdf

[30] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing
and softwarization: A survey on principles, enabling technologies, and solutions,”
IEEE Communications Surveys and Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.
[Online]. Available: http://doi.org/gfjx6d

[31] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and
J. Folgueira, “Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and
Challenges,” IEEE Communications Magazine, vol. 55, no. 5, pp. 80–87, May. 2017.
[Online]. Available: http://doi.org/dv2x

[32] F. Zarrar Yousaf, M. Bredel, S. Schaller, and F. Schneider, “NFV and SDN —
Key Technology Enablers for 5G Networks,” IEEE Journal, vol. 35, no. 11, pp.
2468–2478, Nov. 2017. [Online]. Available: http://doi.org/dv2z

[33] 3GPP, “NR; NR and NG-RAN Overall Description,” 3rd Generation Partnership
Project, Tech. Rep. 38.300 - Release 16.1.0 Stage 2, Apr. 2020. [Online]. Available:
www.3gpp.org/DynaReport/38300.htm

[34] M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A Comprehensive Survey
of RAN Architectures Toward 5G Mobile Communication System,” IEEE Access,
vol. 7, pp. 70 371–70 421, 2019. [Online]. Available: http://doi.org/dwh7

[35] 3GPP, “NR; Physical layer; General description,” 3rd Generation Partnership
Project, Tech. Rep. 38.201 - Release 16.0, Dec. 2019. [Online]. Available:
www.3gpp.org/DynaReport/38201.htm

[36] 3GPP, “NR; Physical channels and modulation,” 3rd Generation Partnership
Project, Tech. Rep. 38.211 - Release 16.1, Mar. 2019. [Online]. Available:
www.3gpp.org/DynaReport/38211.htm

[37] 3GPP, “NR; Multiplexing and channel coding,” 3rd Generation Partnership
Project, Tech. Rep. 38.212 - Release 16.1, Mar. 2019. [Online]. Available:
www.3gpp.org/DynaReport/38212.htm

96 REFERENCES

[38] M. Dohler and T. Nakamura, 5G Mobile and Wireless Communications Technology,
1st ed., A. Osseiran, J. F. Monserrat, and P. Marsch, Eds. Cambridge University
Press, 2016.

[39] ETSI, “Network Functions Virtualisation,” 2020, last accessed on 28/04/2020.
[Online]. Available: www.etsi.org/technologies/nfv

[40] W. Stallings, F. Agboma, and S. Jelassi, Foundations of Modern Networking: SDN,
NFV, QoE, IoT, and Cloud, ser. The William Stallings books on computer and data
communications technology. Pearson, 2015.

[41] M. Chiosi and et al., “ETSI White Paper: NFV - An Introduction,
Benefits, Enablers, Challenges & Call for Action,” European Telecommunications
Standards Institute, Tech. Rep., Oct. 2012, presented at the “SDN and
OpenFlow World Congress”, Darmstadt - Germany. [Online]. Available: http:
//portal.etsi.org/NFV/NFV_White_Paper.pdf

[42] ETSI, “GS NFV 002 - V1.2.1 - Network Functions Virtualisation (NFV);
Architectural Framework,” European Telecommunications Standards Institute,
Tech. Rep., Dec. 2014. [Online]. Available: www.etsi.org/standards

[43] ONF, “About the ONF| Mission, Members, Training, Partners,” last accessed on
27/04/2020. [Online]. Available: www.opennetworking.org/mission/

[44] ONF, “TR-502: SDN architecture,” Open Networking Foundation, Tech. Rep.
Issue 1, Jun. 2014. [Online]. Available: www.opennetworking.org/software-defined-
standards/archives

[45] ONF, “TR-521: SDN Architecture,” Open Networking Foundation, Tech. Rep. Issue
1.1, Oct. 2016. [Online]. Available: www.opennetworking.org/software-defined-
standards/archives

[46] ETSI, “GS NFV-EVE 005 - V1.1.1 - Network Functions Virtualisation (NFV);
Ecosystem; Report on SDN Usage in NFV Architectural Framework,” European
Telecommunications Standards Institute, Tech. Rep., Dec. 2015. [Online]. Available:
www.etsi.org/standards

[47] ONF, “TR-518: Relationship of SDN and NFV,” Open Networking Foundation, Tech.
Rep. Issue 1, Oct. 2015. [Online]. Available: www.opennetworking.org/software-
defined-standards/archives

[48] C. Chappell, “White Paper - The Evolution to Cloud-Native NFV: Early adoption
brings benefits with a flexible approach,” Analysys Mason, Tech. Rep., Nov. 2017.
[Online]. Available: www.analysysmason.com

[49] 5G-PPP, “White Paper - From Webscale to Telco, the Cloud Native Journey,” 5G
Infrastructure Public Private Partnership, Tech. Rep., Jul. 2018. [Online]. Available:
https://5g-ppp.eu

[50] 5G-PPP, “White Paper - Cloud-Native and Verticals’ services,” 5G Infrastructure
Public Private Partnership, Tech. Rep., Aug. 2019. [Online]. Available: https:
//5g-ppp.eu

REFERENCES 97

[51] ETSI, “GS MEC 002 - V2.1.1 - Multi-access Edge Computing (MEC); Use Cases
and Requirements,” European Telecommunications Standards Institute, Tech. Rep.,
Oct. 2018, phase 2. [Online]. Available: www.etsi.org/standards

[52] G. A. Carella, M. Pauls, T. Magedanz, M. Cilloni, P. Bellavista, and L. Foschini,
“Prototyping NFV-based Multi-access Edge Computing in 5G ready Networks with
Open Baton,” in IEEE Conference on Network Softwarization (NetSoft), Jul. 2017.
[Online]. Available: http://doi.org/dv23

[53] S. Kekki and et al., “ETSI White Paper: MEC in 5G networks,” European
Telecommunications Standards Institute, Tech. Rep. 28, Jun. 2018. [Online].
Available: www.etsi.org

[54] A. Reznik and et al., “MEC in an Enterprise Setting: A Solution Outline,”
European Telecommunications Standards Institute, Tech. Rep. 30, Sep. 2018.
[Online]. Available: www.etsi.org

[55] ETSI, “GS MEC 003 - V2.1.1 - Multi-access Edge Computing (MEC); Framework
and Reference Architecture,” European Telecommunications Standards Institute,
Tech. Rep., Jan. 2019. [Online]. Available: www.etsi.org/standards

[56] TeleManagement Forum (TM Forum), “Frameworx 19.5,” 2020,
last accessed on 05/05/2020. [Online]. Available: http:
//casewise.tmforum.org/evolve/statics/frameworx/index.html

[57] Altice Labs, S.A., Altran Portugal, S.A., IT, IT Center, Nokia, Onesource,
PDM&FC, Ubiwhere, Universidade de Coimbra, “Use cases and requirements for
solutions targetting 5G network core,” 5GO consortium, Tech. Rep., Mar. 2018,
D2.1 - V1.0. [Online]. Available: https://5go.pt/en/results

[58] R. Guerzoni, I. Vaishnavi, D. Perez Caparros, A. Galis, F. Tusa, P. Monti,
A. Sganbelluri, G. Biczók, B. Sonkoly, L. Toka, A. Ramos, J. Melián,
O. Dugeon, F. Cugini, B. Martini, P. Iovanna, G. Giuliani, R. Figueiredo, L. M.
Contreras-Murillo, C. J. Bernardos, C. Santana, and R. Szabo, “Analysis of
end-to-end multi-domain management and orchestration frameworks for software
defined infrastructures: an architectural survey,” Transactions on Emerging
Telecommunications Technologies, vol. 28, no. 4, 2017. [Online]. Available:
http://doi.org/f3tbpn

[59] 5G Americas, “Management Orchestration & Automation - White Paper,” 5G
Americas, Tech. Rep., Nov. 2019. [Online]. Available: www.5gamericas.org/wp-
content/uploads/2019/11/Management-Orchestration-and-Automation_clean.pdf

[60] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, “NFV and SDN-Key
technology enablers for 5G networks,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 11, pp. 2468–2478, Nov. 2017. [Online]. Available:
https://doi.org/dv2z

[61] ETSI, “GS NFV-MAN 001 - V1.1.1 - Network Functions Virtualisation
(NFV); Management and Orchestration,” European Telecommunications Standards
Institute, Tech. Rep., Dec. 2014. [Online]. Available: www.etsi.org/standards

98 REFERENCES

[62] K. Martiny, D. Telekom, V. Yanover, Z. Lan, R. Mackenzie, B. Khasnabish,
J. Groenendijk, H. Alkanani, J. Golic, and T. Italia, “5G Network and Service
Management Including Orchestration v3.14.0,” Next Generation Mobile Networks
Alliance, Tech. Rep., Mar. 2019. [Online]. Available: www.ngmn.org

[63] J. R. Boyd, “A discourse on winning and losing,” in Destruction and Creation, 1976.

[64] Orange and Huawei, “White Paper: Future OSS - Providing the Agility to support
digital operations transformation of hybrid networks,” Orange, S.A. and Huawei
Technologies, Ltd., Tech. Rep., 2017. [Online]. Available: www.huawei.com

[65] J. Strassner, Policy-Based Network Management: Solutions for the Next Generation,
1st ed., M. Kaufmann, Ed. Elsevier Ltd., 2003.

[66] A. R. Choudhary, “Policy-based network management,” Bell Labs Technical Journal,
vol. 9, no. 1, pp. 19–29, 2004. [Online]. Available: https://doi.org/dpdqxq

[67] J. Ding, Advances in Network Management, 1st ed., N. Y. A. Publications, Ed.
Auerbach Publications, 2010.

[68] N. F. Saraiva de Sousa, D. A. Lachos Perez, R. V. Rosa, M. A. Santos,
and C. Esteve Rothenberg, “Network Service Orchestration: A survey,”
Computer Communications, vol. 142-143, p. 69–94, Jun. 2019. [Online]. Available:
http://doi.org/dv2v

[69] Anuta Networks, “A Primer on Network Service Orchestration Contents,” Anuta
Networks, Tech. Rep., Mar. 2018. [Online]. Available: www.anutanetworks.com/wp-
content/uploads/2018/03/network-orchestration-ebook.pdf

[70] ONAP, “White Paper: Open Network Automation Platform - Architecture
Overview,” Linux Foundation Projects, Tech. Rep., Jul. 2019. [Online].
Available: https://www.onap.org/wp-content/uploads/sites/20/2019/07/ONAP_
CaseSolution_Architecture_062519.pdf

[71] A. Kapadia, ONAP Demystified: Automate Network Services with ONAP. CreateS-
pace Independent Publishing Platform, North Charleston, SC, USA, 2018.

[72] Cloudify, “ONAP: Orchestration for Real Results - A Guide to ONAP
Architecture and Use Cases,” Cloudify, Tech. Rep., Feb. 2018. [Online]. Available:
https://cloudify.co

[73] Linux Foundation Projects, “ONAP Architecture - El Alto,” 2020, last accessed
on 16/05/2020. [Online]. Available: https://docs.onap.org/en/elalto/guides/onap-
developer/architecture/onap-architecture.html#id1

[74] ONAP, “ONAP 5G Blueprint Overview,” Linux Foundation Projects, Tech. Rep.,
Jul. 2019. [Online]. Available: www.onap.org

[75] A. Hoban, A. T. Sepulveda, G. G. de Blas, K. Kashalkar, M. Shuttleworth,
M. Harper, and R. Velandy, “OSM Release ONE: A Technical Overview,” European
Telecommunications Standards Institute, Tech. Rep., Oct. 2016, White Paper.
[Online]. Available: https://osm.etsi.org/wikipub/index.php/Release_notes_and_
whitepapers

REFERENCES 99

[76] Intel, Telenor, A. Labs, Netrounds, and RIFT.io, “White Paper: PoC Demonstrates
Automated Assurance and DevOps in Service Chains and 5G Network Slices,”
European Telecommunications Standards Institute, Tech. Rep., 2017. [Online].
Available: https://osm.etsi.org/wikipub/images/3/3c/PoC_1_White_Paper.pdf

[77] ETSI OSM, “OSM Scope and Functionality - OSM Public Wiki,” 2020, last accessed
on 03/05/2020. [Online]. Available: https://osm.etsi.org/wikipub/index.php/OSM_
Scope_and_Functionality

[78] ETSI OSM, “OSM Integration Guidelines - OSM Public Wiki,” 2020, last accessed
on 03/05/2020. [Online]. Available: https://osm.etsi.org/wikipub/index.php/OSM_
Integration_Guidelines

[79] A. Israel, A. T. Sepúlveda, A. Reid, F. Vicens, F. J. R. Salguero, G. G. de Blas,
G. Lavado, M. Shuttleworth, M. Harper, M. Marchetti, R. Vilalta, S. Almagia, and
V. Little, “OSM Release FIVE: Technical Overview,” European Telecommunications
Standards Institute, Tech. Rep., Jan. 2019, White Paper. [Online]. Available:
https://osm.etsi.org/wikipub/index.php/Release_notes_and_whitepapers

[80] OpenStack Foundation, “Heat - OpenStack,” p. 1, 2020, last accessed on 04/05/2020.
[Online]. Available: https://wiki.openstack.org/wiki/Heat

[81] Fujitsu, “Overview of Heat,” last accessed on 30/04/2020.
[Online]. Available: https://doc.cloud.global.fujitsu.com/lib/iaas/en/heat-
template/concept/overview_of_heat.html

[82] OpenStack Foundation, “Heat Orchestration Template Guide,” p. 1,
2020, last accessed on 04/05/2020. [Online]. Available: https:
//docs.openstack.org/heat/latest/template_guide/hot_guide.html

[83] OASIS, “TOSCA Version 1.0,” Nov. 2013, last accessed on 04/05/2020. [Online].
Available: https://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

[84] OASIS, “TOSCA Version 2.0,” Jun. 2020, last accessed on 04/07/2020. [Online].
Available: https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.pdf

[85] M. Owen and J. Raj, “BPMN: Introduction to the New Business Process
Modeling Standard,” Popkin Software, Tech. Rep., Mar. 2003. [Online]. Available:
www.omg.org

[86] M. Von Rosing, H. Von Scheel, and A. W. Scheer, The Complete Business Process
Handbook: Body of Knowledge from Process Modeling to BPM. Elsevier Inc., 2014,
vol. 1. [Online]. Available: http://doi.org/dv27

[87] S. A. White, “Introduction to BPMN,” IBM Corporation, Tech. Rep., Mar. 2020.
[Online]. Available: www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf

[88] OMG, “Business Process Model and Notation (BPMN), Version 2.0.2,”
Object Management Group, Tech. Rep., Dec. 2013. [Online]. Available:
www.omg.org/spec/BPMN/2.0.2

[89] Camunda Services GmbH, “Camunda BPM documentation - Introduction,” 2020.
[Online]. Available: https://docs.camunda.org/manual/7.12/introduction

100 REFERENCES

[90] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of Business
Process Management. Springer Berlin Heidelberg, 2013. [Online]. Available:
http://doi.org/b79v

[91] Camunda Services GmbH, “Camunda Best Practices,” last accessed on 02/05/2020.
[Online]. Available: https://camunda.com/best-practices/_book/

[92] Camunda Services GmbH, “Camunda BPM documentation - Archi-
tecture Overview,” last accessed on 01/05/2020. [Online]. Available:
https://docs.camunda.org/manual/7.12/introduction/architecture

[93] Camunda Services GmbH, “Camunda BPM documentation - Manual,” last accessed
on 01/05/2020. [Online]. Available: https://docs.camunda.org/manual/7.12

[94] Camunda Services GmbH, “BPMN 2.0 Symbol Reference,” last accessed on
01/05/2020. [Online]. Available: https://camunda.com/bpmn/reference

[95] Camunda Services GmbH, “BPMN 2.0 Implementation Refer-
ence,” last accessed on 01/05/2020. [Online]. Available: https:
//docs.camunda.org/manual/7.12/reference/bpmn20

[96] Oracle, “Oracle Business Process Management Suite,” Or-
acle Corporation, Tech. Rep., 2014. [Online]. Avail-
able: www.oracle.com/technetwork/middleware/bpm/overview/bpm-suite-12c-ds-
2264242.pdf

[97] Oracle, “Oracle Business Process Management,” last accessed on 01/05/2020.
[Online]. Available: www.oracle.com/middleware/technologies/bpm.html

[98] Cisco Systems, “Cisco Annual Internet Report (2018–2023) White Pa-
per,” p. 35, 2020, last accessed on 07/06/2020. [Online]. Avail-
able: www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html

[99] Altice Labs, S.A., Altran Portugal, S.A., IT, IT Center, Nokia, Onesource,
PDM&FC, Ubiwhere, Universidade de Coimbra, “Scenario definition for different
traffic profiles,” 5GO consortium, Tech. Rep., Jun. 2018, D4.1 - V1.0. [Online].
Available: https://5go.pt/en/results

[100] Z. Wu, J. Zhang, W. Xie, and F. Yang, “CDN Convergence Based on
Multi-Access Edge Computing,” in 2018 10th International Conference on Wireless
Communications and Signal Processing, WCSP 2018. Institute of Electrical and
Electronics Engineers Inc., Nov. 2018. [Online]. Available: http://doi.org/d68w

[101] A. Pathan and R. Buyya, “A taxonomy and survey of content delivery networks,”
Grid Computing and Distributed Systems Laboratory, 2007. [Online]. Available:
http://www.hit.bme.hu/~jakab/edu/litr/CDN/CDN-Taxonomy.pdf

[102] P. Frangoudis, L. Yala, and A. Ksentini, “CDN-as-a-Service Provision over a Telecom
Operator’s Cloud,” IEEE Transactions on Network and Service Management, vol. 14,
no. 3, pp. 702–716, Sep. 2017. [Online]. Available: http://doi.org/gbww5b

REFERENCES 101

[103] P. T. Endo, J. Byrne, T. Lynn, R. Loomba, R. Quinn, C. K. Filelis-Papadopoulos,
K. M. Giannoutakis, G. A. Gravvanis, D. Tzovaras, P. Willis, and S. Svorobej,
“Analyzing resource distribution over a real-world large-scale virtual content
infrastructure,” in Proceedings - International Symposium on Computers and
Communications, vol. 2019-June. Institute of Electrical and Electronics Engineers
Inc., Jun. 2019. [Online]. Available: https://doi.org/d7t7

[104] C. K. Filelis-Papadopoulos, K. M. Giannoutakis, G. A. Gravvanis, P. T. Endo,
D. Tzovaras, S. Svorobej, and T. Lynn, “Simulating large vCDN networks: A
parallel approach,” Simulation Modelling Practice and Theory, vol. 92, pp. 100–114,
Apr. 2019. [Online]. Available: https://doi.org/d7tz

[105] ETSI, “GR NFV 001 - V1.2.1 - Network Functions Virtualisation (NFV); Use
Cases,” European Telecommunications Standards Institute, Tech. Rep., May. 2017.
[Online]. Available: www.etsi.org/standards

[106] B. Zolfaghari, G. Srivastava, S. Roy, H. R. Nemati, F. Afghah, T. Koshiba, A. Razi,
K. Bibak, P. Mitra, and B. K. Rai, “Content Delivery Networks: State of the Art,
Trends, and Future Roadmap,” ACM Comput. Surv., vol. 53, no. 2, Apr. 2020.
[Online]. Available: https://doi.org/d7vn

[107] Linux Foundation Projects, “Service Design and Creation
Project,” 2020, last accessed on 09/07/2020. [Online]. Avail-
able: https://wiki.onap.org/display/DW/Service+Design+and+Creation+
%28SDC%29+Portal

[108] Linux Foundation Projects - ONAP, “ARCHCOM: InfoFlow - SDC Ser-
vice Distribution,” 2019, last accessed on 15/07/2020. [Online]. Avail-
able: https://wiki.onap.org/display/DW/ARCHCOM%3A+InfoFlow+-+SDC+
Service+Distribution

[109] Linux Foundation Projects, “Active and Available Inventory Project,”
2019, last accessed on 15/07/2020. [Online]. Available: https:
//wiki.onap.org/display/DW/Active+and+Available+Inventory+Project

[110] Linux Foundation Projects, “Service Orchestrator (SO) Project,”
2018, last accessed on 25/07/2020. [Online]. Available: https:
//wiki.onap.org/pages/viewpage.action?pageId=4719246

[111] Linux Foundation Projects, “Virtual Infrastructure Deployment Project,”
2018, last accessed on 26/07/2020. [Online]. Available: https:
//wiki.onap.org/display/DW/Virtual+Infrastructure+Deployment+Project

[112] Linux Foundation Projects, “ONAP El Alto - SO - Architecture —
Functional View,” 2020, last accessed on 28/05/2020. [Online]. Available:
https://docs.onap.org/en/elalto/submodules/so.git/docs/

[113] Linux Foundation Projects, “Virtual Function Controller Project,” 2020, last accessed
on 22/07/2020. [Online]. Available: https://wiki.onap.org/display/DW/Virtual+
Function+Controller+Project

102 REFERENCES

[114] Linux Foundation Projects, “Virtual Function Controller Architec-
ture,” 2020, last accessed on 22/07/2020. [Online]. Available: https:
//docs.onap.org/en/elalto/submodules/vfc/nfvo/lcm.git/docs/

[115] Linux Foundation Projects, “Multi VIM/Cloud Project,” 2018,
last accessed on 23/07/2020. [Online]. Available: https:
//wiki.onap.org/pages/viewpage.action?pageId=3247262

[116] Linux Foundation Projects, “Microservices Bus Project,” 2018, last accessed on
18/07/2020. [Online]. Available: https://wiki.onap.org/display/DW/Microservices+
Bus+Project

[117] Linux Foundation Projects, “Data Movement as a Platform Project,”
2019, last accessed on 16/07/2020. [Online]. Available: https:
//wiki.onap.org/display/DW/Data+Movement+as+a+Platform+Project

[118] L. Deng, H. Deng, and S. Terrill, “Harmonizing Open Source and Standards: The
Progress of ONAP,” Linux Foundation Projects, Tech. Rep., Apr. 2019. [Online].
Available: www.onap.org

[119] Linux Foundation Projects, “External API/NBI - Offered APIs,”
2020, last accessed on 29/05/2020. [Online]. Available: https:
//docs.onap.org/en/elalto/submodules/externalapi/nbi.git/docs/

[120] Linux Foundation Projects, “ONAP External API Framework Project,”
2019, last accessed on 30/05/2020. [Online]. Available: https:
//wiki.onap.org/display/DW/External+API+Framework+Project

[121] TeleManagement Forum (TM Forum), “TMF633 ServiceCatalog API,” last accessed
on 30/05/2020. [Online]. Available: https://github.com/tmforum-apis/TMF633_
ServiceCatalog

[122] TeleManagement Forum (TM Forum), “TMF638 ServiceInventory API,” last
accessed on 30/05/2020. [Online]. Available: https://github.com/tmforum-
apis/TMF638_ServiceInventory

[123] TeleManagement Forum (TM Forum), “TMF641 ServiceOrder API,” last accessed
on 30/05/2020. [Online]. Available: https://github.com/tmforum-apis/TMF641_
ServiceOrder

[124] ETSI, “GS NFV-IFA 009 V1.1.1 - Network Functions Virtualisation (NFV);
Management and Orchestration; Report on Architectural Options,” European
Telecommunications Standards Institute, Tech. Rep., Jul. 2016. [Online]. Available:
www.etsi.org/standards

[125] Linux Foundation Projects, “ETSI Alignment Support,” 2020, last accessed
on 16/07/2020. [Online]. Available: https://wiki.onap.org/display/DW/ETSI+
Alignment+Support

[126] ETSI, “GS NFV-SOL 005 V2.8.1 - Network Functions Virtualisation (NFV) Release
2; Protocols and Data Models; RESTful protocols specification for the Os-Ma-nfvo
Reference Point,” European Telecommunications Standards Institute, Tech. Rep.,
Sep. 2020. [Online]. Available: www.etsi.org/standards

REFERENCES 103

[127] ETSI, “GS NFV-SOL 003 V3.3.1 - Network Functions Virtualisation (NFV) Release
3; Protocols and Data Models; RESTful protocols specification for the Or-Vnfm
Reference Point,” European Telecommunications Standards Institute, Tech. Rep.,
Aug. 2020. [Online]. Available: www.etsi.org/standards

[128] ETSI, “GS NFV-SOL 002 V3.3.1 - Network Functions Virtualisation (NFV) Release
3; Protocols and Data Models; RESTful protocols specification for the Ve-Vnfm
Reference Point,” European Telecommunications Standards Institute, Tech. Rep.,
Aug. 2020. [Online]. Available: www.etsi.org/standards

[129] Linux Foundation Projects, “ONAP Operations Manager Project,”
2020, last accessed on 02/09/2020. [Online]. Available: https:
//wiki.onap.org/display/DW/ONAP+Operations+Manager+Project

[130] ONAP, “White Paper: ONAP Solution Brief,” Linux Foundation Projects, Tech.
Rep., Jun. 2018, last accessed on 19/09/2020. [Online]. Available: www.onap.org/wp-
content/uploads/sites/20/2018/06/ONAP_CaseSolution_OOM_0618FNL.pdf

[131] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open, Programmable,
and Virtualized 5G Networks: State-of-the-Art and the Road Ahead,” Computer
Networks, vol. 182, p. 107516, May. 2020. [Online]. Available: https://doi.org/d8tm

[132] Linux Foundation Projects, “Setting Up ONAP - El
Alto,” 2020, last accessed on 03/09/2020. [Online]. Avail-
able: https://docs.onap.org/en/elalto/submodules/oom.git/docs/oom_cloud_
setup_guide.html

[133] Linux Foundation Projects, “OOM Quick Start Guide,” 2020,
last accessed on 04/09/2020. [Online]. Available: https:
//docs.onap.org/en/elalto/submodules/oom.git/docs/oom_quickstart_guide.html

[134] Linux Foundation Projects, “ONAP Design Service,” 2020, last accessed on
06/07/2020. [Online]. Available: https://docs.onap.org/en/elalto/guides/onap-
user/design/index.html

[135] J. Aires, P. Barbosa, S. Figueiredo, B. Parreira, J. Mamede, and M. Ricardo, “Ad-
dressing end-to-end Orchestration of Virtualized Telco Services using ONAP in a
R&D environment,” InForum Braga 2019: Comunicações e Redes de Computadores,
p. 12, Sep. 2019.

[136] Linux Foundation Projects, “Service Instantiation via ONAP NBI
API (TM Forum),” 2019, last accessed on 17/08/2020. [Online].
Available: https://docs.onap.org/en/elalto/submodules/so.git/docs/developer_
info/instantiate/instantiation/nbi/index.html

[137] Linux Foundation Projects, “API consumed by SO - VFC
APIs,” 2020, last accessed on 20/09/2020. [Online]. Avail-
able: https://docs.onap.org/en/elalto/submodules/so.git/docs/api/apis/consumed-
apis.html#vfc-apis

