Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/6967
Registo completo
Campo DCValorIdioma
dc.contributor.authorLopes, António M.-
dc.contributor.authorMachado, J. A. Tenreiro-
dc.description.abstractComplex industrial plants exhibit multiple interactions among smaller parts and with human operators. Failure in one part can propagate across subsystem boundaries causing a serious disaster. This paper analyzes the industrial accident data series in the perspective of dynamical systems. First, we process real world data and show that the statistics of the number of fatalities reveal features that are well described by power law (PL) distributions. For early years, the data reveal double PL behavior, while, for more recent time periods, a single PL fits better into the experimental data. Second, we analyze the entropy of the data series statistics over time. Third, we use the Kullback–Leibler divergence to compare the empirical data and multidimensional scaling (MDS) techniques for data analysis and visualization. Entropy-based analysis is adopted to assess complexity, having the advantage of yielding a single parameter to express relationships between the data. The classical and the generalized (fractional) entropy and Kullback–Leibler divergence are used. The generalized measures allow a clear identification of patterns embedded in the data.pt_PT
dc.relation.ispartofseriesJournal of Computational and Nonlinear Dynamics;Vol. 11, Issue 3-
dc.titleEntropy Analysis of Industrial Accident Data Seriespt_PT
degois.publication.titleJournal of Computational and Nonlinear Dynamicspt_PT
Aparece nas colecções:ISEP - DEE - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ART_TenreiroMachado29_2015.pdf83,25 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.