Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/6953
Título: Discrete fractional order system vibrations
Autor: Hedrih, Katica R. (Stevanovic)
Machado, J. A. Tenreiro
Palavras-chave: Fractional order element
Generalized function of fractional order dissipation of system energy
Matrix fractional order differential equation
Eigen fractional order mode
Fractional order oscillator
Mechanical to electrical analogy
Data: 2015
Editora: Elsevier
Relatório da Série N.º: International Journal of Non-Linear Mechanics;Vol. 73
Resumo: A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
URI: http://hdl.handle.net/10400.22/6953
DOI: 10.1016/j.ijnonlinmec.2014.11.009
Versão do Editor: http://www.sciencedirect.com/science/article/pii/S002074621400225X
Aparece nas colecções:ISEP - DEE - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ART_TenreiroMachado18_2015.pdf2,18 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.