Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/6948
Título: Multidimensional Scaling Visualization using Parametric Similarity Indices
Autor: Machado, J. A. Tenreiro
Lopes, António M.
Galhano, A.M.
Palavras-chave: Clustering
Complex systems
Multidimensional scaling
Parametric similarity indices
Data: 2015
Editora: Entropy
Relatório da Série N.º: Entropy;Vol. 17, nº 4
Resumo: In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, and we generate the corresponding MDS maps of ‘points’. Third, we use Procrustes analysis to linearly transform the MDS charts for maximum superposition and to build a global MDS map of “shapes”. This final plot captures the time evolution of the phenomena and is sensitive to the PSI adopted. The generalized correlation, the Minkowski distance and four entropy-based indices are tested. The proposed approach is applied to the Dow Jones Industrial Average stock market index and the Europe Brent Spot Price FOB time-series.
URI: http://hdl.handle.net/10400.22/6948
DOI: 10.3390/e17041775
Versão do Editor: http://www.mdpi.com/1099-4300/17/4/1775/htm
Aparece nas colecções:ISEP - DEE - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ART_TenreiroMachado13_2015.pdf1,87 MBAdobe PDFVer/Abrir

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.