Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/6657
Título: Arc exchange systems and renormalization
Autor: Pinto, Alberto A.
Rand, David A.
Ferreira, Flávio
Palavras-chave: Hyperbolic dynamics
Renormalization
Markov maps
Minimal sets
Data: 2010
Editora: Taylor & Francis
Citação: A.A. Pinto , D.A. Rand & F. Ferreira (2010) Arc exchange systems and renormalization, Journal of Difference Equations and Applications, 16:4, 347-371, DOI: 10.1080/10236190802422059
Resumo: We exhibit the construction of stable arc exchange systems from the stable laminations of hyperbolic diffeomorphisms. We prove a one-to-one correspondence between (i) Lipshitz conjugacy classes of C(1+H) stable arc exchange systems that are C(1+H) fixed points of renormalization and (ii) Lipshitz conjugacy classes of C(1+H) diffeomorphisms f with hyperbolic basic sets Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. Let HD(s)(Lambda) and HD(u)(Lambda) be, respectively, the Hausdorff dimension of the stable and unstable leaves intersected with the hyperbolic basic set L. If HD(u)(Lambda) = 1, then the Lipschitz conjugacy is, in fact, a C(1+H) conjugacy in (i) and (ii). We prove that if the stable arc exchange system is a C(1+HDs+alpha) fixed point of renormalization with bounded geometry, then the stable arc exchange system is smooth conjugate to an affine stable arc exchange system.
Peer review: yes
URI: http://hdl.handle.net/10400.22/6657
DOI: 10.1080/10236190802422059
ISSN: 1023-6198
Aparece nas colecções:ESEIG - MAT - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ART_FlavioFerreira_2010_1.pdf504,41 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!
ART_FlavioFerreira_2010_1.pdf928,25 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.