Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/6182
Título: Exploring distributed computing tools through data mining tasks
Autor: Rahman, Anishur
Orientador: Oliveira, Paulo Jorge
Palavras-chave: Distributed computing
Condor
BOINC
Data mining task
Computação distribuída
Tarefa de mineração de dados
Data de Defesa: 2014
Resumo: Harnessing idle PCs CPU cycles, storage space and other resources of networked computers to collaborative are mainly fixated on for all major grid computing research projects. Most of the university computers labs are occupied with the high puissant desktop PC nowadays. It is plausible to notice that most of the time machines are lying idle or wasting their computing power without utilizing in felicitous ways. However, for intricate quandaries and for analyzing astronomically immense amounts of data, sizably voluminous computational resources are required. For such quandaries, one may run the analysis algorithms in very puissant and expensive computers, which reduces the number of users that can afford such data analysis tasks. Instead of utilizing single expensive machines, distributed computing systems, offers the possibility of utilizing a set of much less expensive machines to do the same task. BOINC and Condor projects have been prosperously utilized for solving authentic scientific research works around the world at a low cost. In this work the main goal is to explore both distributed computing to implement, Condor and BOINC, and utilize their potency to harness the ideal PCs resources for the academic researchers to utilize in their research work. In this thesis, Data mining tasks have been performed in implementation of several machine learning algorithms on the distributed computing environment.
Tirar partido dos recursos de CPU disponíveis, do espaço de armazenamento, e de outros recursos de computadores interligados em rede, de modo a que possam trabalhar conjuntamente, são características comuns a todos os grandes projetos de investigação em grid computing. Hoje em dia, a maioria dos laboratórios informáticos dos centros de investigação das instituições de ensino superior encontra-se equipada com poderosos computadores. Constata-se que, na maioria do tempo, estas máquinas não estão a utilizar o seu poder de processamento ou, pelo menos, não o utilizam na sua plenitude. No entanto, para problemas complexos e para a análise de grandes quantidades de dados, são necessários vastos recursos computacionais. Em tais situações, os algoritmos de análise requerem computadores muito potentes e caros, o que reduz o número de utilizadores que podem realizar essas tarefas de análise de dados. Em vez de se utilizarem máquinas individuais dispendiosas, os sistemas de computação distribuída oferecem a possibilidade de se utilizar um conjunto de máquinas muito menos onerosas que realizam a mesma tarefa. Os projectos BOINC e Condor têm sido utilizados com sucesso em trabalhos de investigação científica, em todo o mundo, com um custo reduzido. Neste trabalho, o objetivo principal é explorar ambas as ferramentas de computação distribuída, Condor e BOINC, para que se possa aproveitar os recursos computacionais disponíveis dos computadores, utilizando-os de modo a que os investigadores possam tirar partido deles nos seus trabalhos de investigação. Nesta dissertação, são realizadas tarefas de data mining com diferentes algoritmos de aprendizagem automática, num ambiente de computação distribuída.
URI: http://hdl.handle.net/10400.22/6182
Designação: Mestrado em Engenharia Informática, Área de Especialização em Tecnologias do Conhecimento e Decisão
Aparece nas colecções:ISEP - DM – Engenharia Informática

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
DM_Anishur_Rahman_2014_MEI.pdf1,68 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.