Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/5880
Título: Scenarios Generation for Multi-Agent simulation of Electricity Markets based on Intelligent Data Analysis
Autor: Santos, Gabriel
Praça, Isabel
Pinto, Tiago
Ramos, Sérgio
Vale, Zita
Palavras-chave: Electricity Markets
Knowledge Discovery in Databases
Machine Learning
Multi-Agent Simulators
Real Electricity Markets
Scenarios Generation
Data: Abr-2013
Editora: IEEE
Relatório da Série N.º: Intelligent Agent (IA);2013
Resumo: This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
URI: http://hdl.handle.net/10400.22/5880
DOI: 10.1109/IA.2013.6595183
Versão do Editor: ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6595183&queryText%3DScenarios+Generation+for+Multi-Agent+simulation+of+Electricity+Markets+based+on+Intelligent+Data+Analysis
Aparece nas colecções:ISEP – GECAD – Comunicações em eventos científicos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
COM_GSantos_2013_GECAD.pdf539,1 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.