Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/5409
Título: Multiple Roots of Systems of Equations by Repulsion Merit Functions
Autor: Ramadas, Gisela C. V.
Fernandes, Edite M. G. P.
Rocha, Ana Maria A. C.
Palavras-chave: System of equations
Multiple roots
Penalty function
Repulsion
Harmony search
Data: 2014
Editora: Springer
Relatório da Série N.º: Lecture Notes in Computer Science;Vol. 8580
Resumo: In this paper we address the problem of computing multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function. The search procedure for a global minimizer of the merit function is carried out by a metaheuristic, known as harmony search, which does not require any derivative information. The multiple roots of the system are sequentially determined along several iterations of a single run, where the merit function is accordingly modified by penalty terms that aim to create repulsion areas around previously computed minimizers. A repulsion algorithm based on a multiplicative kind penalty function is proposed. Preliminary numerical experiments with a benchmark set of problems show the effectiveness of the proposed method.
Peer review: yes
URI: http://hdl.handle.net/10400.22/5409
DOI: 10.1007/978-3-319-09129-7_10
ISBN: 978-3-319-09128-0
978-3-319-09129-7
Versão do Editor: http://link.springer.com/chapter/10.1007/978-3-319-09129-7_10
Aparece nas colecções:ISEP – DMA – Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ART_GiselaRamadas_DMA_2014.pdf1,13 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.