Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/5367
Título: Dynamic programming for a Markov-switching jump–diffusion
Autor: Azevedo, Nuno
Pinheiro, D.
Weber, G.-W.
Palavras-chave: Stochastic optimal control
Jump–diffusion
Markov-switching
Optimal consumption–investment
Data: 2014
Editora: Elsevier
Citação: In "Journal of Computational and Applied Mathematics". ISSN 0377-0427. 267 (2014) 1-19
Resumo: We consider an optimal control problem with a deterministic finite horizon and state variable dynamics given by a Markov-switching jump–diffusion stochastic differential equation. Our main results extend the dynamic programming technique to this larger family of stochastic optimal control problems. More specifically, we provide a detailed proof of Bellman’s optimality principle (or dynamic programming principle) and obtain the corresponding Hamilton–Jacobi–Belman equation, which turns out to be a partial integro-differential equation due to the extra terms arising from the Lévy process and the Markov process. As an application of our results, we study a finite horizon consumption– investment problem for a jump–diffusion financial market consisting of one risk-free asset and one risky asset whose coefficients are assumed to depend on the state of a continuous time finite state Markov process. We provide a detailed study of the optimal strategies for this problem, for the economically relevant families of power utilities and logarithmic utilities.
Peer review: yes
URI: http://hdl.handle.net/10400.22/5367
DOI: 10.1016/j.cam.2014.01.021
ISSN: 0377-0427
Versão do Editor: http://www.sciencedirect.com/science/article/pii/S0377042714000491
Aparece nas colecções:ESEIG - MAT - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ART_NunoAzevedo_2014_1.pdf778,9 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.