Logo do repositório
 
Miniatura indisponível
Publicação

Saccharomyces cerevisiae Mutants Affected in Vacuole Assembly or Vacuolar H+-ATPase are Hypersensitive to Lead (Pb) Toxicity

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
ART5_CIETI_2014.pdf708.19 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Lead is an important environmental pollutant. The role of vacuole, in Pb detoxification, was studied using a vacuolar protein sorting mutant strain (vps16D), belonging to class C mutants. Cells disrupted in VPS16 gene, did not display a detectable vacuolar-like structure. Based on the loss of cell proliferation capacity, it was found that cells from vps16D mutant exhibited a hypersensitivity to Pb-induced toxicity, compared to wild type (WT) strain. The function of vacuolar H?-ATPase (VATPase), in Pb detoxification, was evaluated using mutants with structurally normal vacuoles but defective in subunits of catalytic (vma1D or vma2D) or membrane domain (vph1D or vma3D) of V-ATPase. All mutants tested, lacking a functional V-ATPase, displayed an increased susceptibility to Pb, comparatively to cells from WT strain. Modification of vacuolar morphology, in Pb-exposed cells, was visualized using a Vma2p-GFP strain. The treatment of yeast cells with Pb originated the fusion of the medium size vacuolar lobes into one enlarged vacuole. In conclusion, it was found that vacuole plays an important role in the detoxification of Pb in Saccharomyces cerevisiae; in addition, a functional V-ATPase was required for Pb compartmentalization.

Descrição

Palavras-chave

Metals toxicity Pb detoxification Vacuolar H+-ATPase Yeast

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Springer

Licença CC

Métricas Alternativas