Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/3389
Título: Application-specific modified particle swarm optimization for energy resource scheduling considering vehicle-to-grid
Autor: Soares, João
Sousa, Tiago
Morais, H.
Vale, Zita
Canizes, Bruno
Silva, António S.
Palavras-chave: Application specific algorithm
Hard combinatorial scheduling
Particle swarm optimization
Vehicle-to-grid scheduling
Data: 2013
Editora: Elsevier
Relatório da Série N.º: Applied Soft Computing; Vol. 13, Issue 11
Resumo: This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Peer review: yes
URI: http://hdl.handle.net/10400.22/3389
ISSN: 1568-4946
Versão do Editor: http://www.sciencedirect.com/science/article/pii/S1568494613002299
Aparece nas colecções:ISEP – GECAD – Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
COM_JoaoSoares_2013_GECAD.pdf2,56 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.