Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/3298
Título: Effects of sulphurization time on Cu2ZnSnS4 absorbers and thin films solar cells obtained from metallic precursors
Autor: Fernandes, P. A.
Salomé, P. M. P.
Sartori, A. F.
Malaquias, J.
Cunha, A. F. da
Schubert, Björn-Arvid
González, J. C.
Ribeiro, G. M.
Palavras-chave: Cu2ZnSnS4
Thin film
Solar cell
Data: 2013
Editora: Elsevier
Relatório da Série N.º: Solar Energy Materials and Solar Cells; Vol. 115
Resumo: We report the results of a study of the sulphurization time effects on Cu2ZnSnS4 absorbers and thin film solar cells prepared from dc-sputtered tackedmetallic precursors. Three different time intervals, 10 min, 30min and 60 min, at maximum sulphurization temperature were considered. The effects of this parameter' change were studied both on the absorber layer properties and on the final solar cell performance. The composition, structure, morphology and thicknesses of the CZTS layers were analyzed. The electrical characterization of the absorber layer was carried out by measuring the transversal electrical resistance of the samples as a function of temperature. This study shows an increase of the conductivity activation energy from 10 meV to 54meV for increasing sulphurization time from 10min to 60min. The solar cells were built with the following structure: SLG/Mo/CZTS/CdS/i-ZnO/ZnO:Al/Ni:Al grid. Several ac response equivalent circuit models were tested to fit impedance measurements. The best results were used to extract the device series and shunt resistances and capacitances. Absorber layer's electronic properties were also determined using the Mott–Schottky method. The results show a decrease of the average acceptor doping density and built-in voltage, from 2.0 1017 cm−3 to 6.5 1015 cm−3 and from 0.71 V to 0.51 V, respectively, with increasing sulphurization time. These results also show an increase of the depletion region width from approximately 90 nm–250 nm.
Peer review: yes
URI: http://hdl.handle.net/10400.22/3298
ISSN: 0927-0248
Versão do Editor: http://www.sciencedirect.com/science/article/pii/S0927024813001451
Aparece nas colecções:ISEP – DFI – Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ART_PFernandes_2013_DFI.pdf1,05 MBAdobe PDFVer/Abrir

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.