Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/2825
Título: Supporting intra-task parallelism in real-time multiprocessor systems
Autor: Fonseca, José Carlos Nunes da
Orientador: Nogueira, Luís Miguel Pinho
Palavras-chave: Sistemas multi-processador
Escalonamento de tempo real
Intra-task parallelism
EDF
Work-stealing
Linux
Multiprocessor systems
Real-time scheduling
Data de Defesa: 2012
Editora: Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto
Resumo: Os sistemas de tempo real modernos geram, cada vez mais, cargas computacionais pesadas e dinâmicas, começando-se a tornar pouco expectável que sejam implementados em sistemas uniprocessador. Na verdade, a mudança de sistemas com um único processador para sistemas multi- processador pode ser vista, tanto no domínio geral, como no de sistemas embebidos, como uma forma eficiente, em termos energéticos, de melhorar a performance das aplicações. Simultaneamente, a proliferação das plataformas multi-processador transformaram a programação paralela num tópico de elevado interesse, levando o paralelismo dinâmico a ganhar rapidamente popularidade como um modelo de programação. A ideia, por detrás deste modelo, é encorajar os programadores a exporem todas as oportunidades de paralelismo através da simples indicação de potenciais regiões paralelas dentro das aplicações. Todas estas anotações são encaradas pelo sistema unicamente como sugestões, podendo estas serem ignoradas e substituídas, por construtores sequenciais equivalentes, pela própria linguagem. Assim, o modo como a computação é na realidade subdividida, e mapeada nos vários processadores, é da responsabilidade do compilador e do sistema computacional subjacente. Ao retirar este fardo do programador, a complexidade da programação é consideravelmente reduzida, o que normalmente se traduz num aumento de produtividade. Todavia, se o mecanismo de escalonamento subjacente não for simples e rápido, de modo a manter o overhead geral em níveis reduzidos, os benefícios da geração de um paralelismo com uma granularidade tão fina serão meramente hipotéticos. Nesta perspetiva de escalonamento, os algoritmos que empregam uma política de workstealing são cada vez mais populares, com uma eficiência comprovada em termos de tempo, espaço e necessidades de comunicação. Contudo, estes algoritmos não contemplam restrições temporais, nem outra qualquer forma de atribuição de prioridades às tarefas, o que impossibilita que sejam diretamente aplicados a sistemas de tempo real. Além disso, são tradicionalmente implementados no runtime da linguagem, criando assim um sistema de escalonamento com dois níveis, onde a previsibilidade, essencial a um sistema de tempo real, não pode ser assegurada. Nesta tese, é descrita a forma como a abordagem de work-stealing pode ser resenhada para cumprir os requisitos de tempo real, mantendo, ao mesmo tempo, os seus princípios fundamentais que tão bons resultados têm demonstrado. Muito resumidamente, a única fila de gestão de processos convencional (deque) é substituída por uma fila de deques, ordenada de forma crescente por prioridade das tarefas. De seguida, aplicamos por cima o conhecido algoritmo de escalonamento dinâmico G-EDF, misturamos as regras de ambos, e assim nasce a nossa proposta: o algoritmo de escalonamento RTWS. Tirando partido da modularidade oferecida pelo escalonador do Linux, o RTWS é adicionado como uma nova classe de escalonamento, de forma a avaliar na prática se o algoritmo proposto é viável, ou seja, se garante a eficiência e escalonabilidade desejadas. Modificar o núcleo do Linux é uma tarefa complicada, devido à complexidade das suas funções internas e às fortes interdependências entre os vários subsistemas. Não obstante, um dos objetivos desta tese era ter a certeza que o RTWS é mais do que um conceito interessante. Assim, uma parte significativa deste documento é dedicada à discussão sobre a implementação do RTWS e à exposição de situações problemáticas, muitas delas não consideradas em teoria, como é o caso do desfasamento entre vários mecanismo de sincronização. Os resultados experimentais mostram que o RTWS, em comparação com outro trabalho prático de escalonamento dinâmico de tarefas com restrições temporais, reduz significativamente o overhead de escalonamento através de um controlo de migrações, e mudanças de contexto, eficiente e escalável (pelo menos até 8 CPUs), ao mesmo tempo que alcança um bom balanceamento dinâmico da carga do sistema, até mesmo de uma forma não custosa. Contudo, durante a avaliação realizada foi detetada uma falha na implementação do RTWS, pela forma como facilmente desiste de roubar trabalho, o que origina períodos de inatividade, no CPU em questão, quando a utilização geral do sistema é baixa. Embora o trabalho realizado se tenha focado em manter o custo de escalonamento baixo e em alcançar boa localidade dos dados, a escalonabilidade do sistema nunca foi negligenciada. Na verdade, o algoritmo de escalonamento proposto provou ser bastante robusto, não falhando qualquer meta temporal nas experiências realizadas. Portanto, podemos afirmar que alguma inversão de prioridades, causada pela sub-política de roubo BAS, não compromete os objetivos de escalonabilidade, e até ajuda a reduzir a contenção nas estruturas de dados. Mesmo assim, o RTWS também suporta uma sub-política de roubo determinística: PAS. A avaliação experimental, porém, não ajudou a ter uma noção clara do impacto de uma e de outra. No entanto, de uma maneira geral, podemos concluir que o RTWS é uma solução promissora para um escalonamento eficiente de tarefas paralelas com restrições temporais.
Multiple programming models are emerging to address the increased need for dynamic task-level parallelism in applications for multi-core processors and shared-memory parallel computing, presenting promising solutions from a user-level perspective. Nonetheless, while high-level parallel languages offer a simple way for application programmers to specify parallelism in a form that easily scales with problem size, they still leave the actual scheduling of tasks to be performed at runtime. Therefore, if the underlying system cannot efficiently map those tasks on the available cores, the benefits will be lost. This is particularly important in modern real-time systems as their average workload is rapidly growing more parallel, complex and computing-intensive, whilst preserving stringent timing constraints. However, as the real-time scheduling theory has mostly been focused on sequential task models, a shift to parallel task models introduces a completely new dimension to the scheduling problem. Within this context, the work presented in this thesis considers how to dynamically schedule highly heterogeneous parallel applications that require real-time performance guarantees on multi-core processors. A novel scheduling approach called RTWS is proposed. RTWS combines the G-EDF scheduler with a priority-aware work-stealing load balancing scheme, enabling parallel real-time tasks to be executed on more than one processor at a given time instant. Two stealing sub-policies have arisen from this proposal and their suitability is discussed in detail. Furthermore, this thesis describes the implementation of a new scheduling class in the Linux kernel concerning RTWS, and extensively evaluate its feasibility. Experimental results demonstrate the greater scalability and lower scheduling overhead of the proposed approach, comparatively to an existing real-time deadline-driven scheduling policy for the Linux kernel, as well as reveal its better performance when considering tasks with intra-task parallelism than without, even for short-living applications. We show that busy-aware stealing is robust to small deviations from a strict priority schedule and conclude that some priority inversion may be actually acceptable, provided it helps reduce contention, communication, synchronisation and coordination between parallel threads.
Peer review: yes
URI: http://hdl.handle.net/10400.22/2825
Aparece nas colecções:ISEP - DM – Engenharia Informática

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
DM_JoseFonseca_2012_MEI.pdf726,09 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.