Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/2020
Título: Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker
Autor: Viswanathan, Subramanian
Rani, Chinnakkaruppanan
Ribeiro, Susana
Delerue-Matos, Cristina
Palavras-chave: Gold nanoelectrode
Ovarian cancer
Biomarker
CA 125
Molecular imprinted biosensor
Data: 2012
Editora: Elsevier
Relatório da Série N.º: Biosensors and Bioelectronics; Vol.33, Issue 1
Resumo: The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5–400 U mL−1. The lowest detection limit was found to be 0.5 U mL−1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.
Peer review: yes
URI: http://hdl.handle.net/10400.22/2020
ISSN: 0956-5663
Versão do Editor: http://www.sciencedirect.com/science/article/pii/S0956566311008712
Aparece nas colecções:ISEP – GRAQ – Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ART_SViswanathan_2012_GRAQ.pdf682,32 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.